4 resultados para Therapeutic companions

em Glasgow Theses Service


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft tissue sarcomas (STS) comprise a heterogenenous group of greater than 50 malignancies of putative mesenchymal cell origin and as such they may arise in diverse tissue types in various anatomical locations throughout the whole body. Collectively they account for approximately 1% of all human malignancies yet have a spectrum of aggressive behaviours amongst their subtypes. They thus pose a particular challenge to manage and remain an under investigated group of cancers with no generally applicable new therapies in the past 40 years and an overall 5-year survival rate that remains stagnant at around 50%. From September 2000 to July 2006 I undertook a full time post-doctoral level research fellowship at the MD Anderson Cancer Center, Houston, Texas, USA in the department of Surgical Oncology to investigate the biology of soft tissue sarcoma and test novel anti- sarcoma adenovirus-based therapy in the preclinical nude rat model of isolated limb perfusion against human sarcoma xenografts. This work, in collaboration with colleagues as indicated herein, led to a number of publications in the scientific literature furthering our understanding of the malignant phenotype of sarcoma and reported preclinical studies with wild-type p53, in a replication deficient adenovirus vector, and oncolytic adenoviruses administered by isolated limb perfusion. Additional collaborative and pioneering preclinical studies reported the molecular imaging of sarcoma response to systemically delivered therapeutic phage RGD-4c AAVP. Doxorubicin chemotherapy is the single most active broadly applicable anti-sarcoma chemotherapeutic yet only has an approximate 30% overall response rate with additional breakthrough tumour progression and recurrence after initial chemo-responsiveness further problematic features in STS management. Doxorubicin is a substrate for the multi- drug resistance (mdr) gene product p-glycoprotein drug efflux pump and exerts its main mode of action by induction of DNA double-strand breaks during the S-phase of the cell cycle. Two papers in my thesis characterise different aspects of chemoresistance in sarcoma. The first shows that wild-type p53 suppresses Protein Kinase Calpha (PKCα) phosphorylation (and activation) of p-glycoprotein by transcriptional repression of PKCα through a Sp-1 transcription factor binding site in its -244/-234 promoter region. The second paper demonstrates that Rad51 (a central mediator of homologous recombination repair of double strand breaks) has elevated levels in sarcoma and particularly in the S- G2 phase of the cell cycle. Suppression of Rad51 with small interfering RNA in sarcoma cell culture led to doxorubicin chemosensitisation. Reintroduction of wild-type p53 into STS cell lines resulted in decreased Rad51 protein and mRNA expression via transcriptional repression of the Rad51 promoter through increased AP-2 binding. In light of poor response rates to chemotherapy, escape from local control portends a poor prognosis for patients with sarcoma. Two papers in my thesis characterise aspects of sarcoma angiogenesis, invasion and metastasis. Human sarcoma samples were found to have high levels of matrix metalloproteinase-9 (MMP-9) with expression levels that correlated with p53 mutational status. MMP-9 is known to degrade extracellular collagen, contribute to the control of the angiogenic switch necessary in primary tumour progression and facilitate invasion and metastasis. Reconstitution of wild-type p53 function led to decreased levels of MMP-9 protein and mRNA as well as zymography-assessed MMP-9 proteolytic activity and decreased tumour cell invasiveness. Reintroduction of wild-type p53 into human sarcoma xenografts in-vivo decreased tumour growth and MMP-9 protein expression. Wild-type p53 was found to suppress mmp-9 transcription via decreased binding of NF-κB to its -607/-595 mmp-9 promoter element. Studies on the role of the VEGF165 in sarcoma found that sarcoma cells stably transfected with VEGF165 formed more aggressive xenografted tumours with increased vascularity, growth rate, metastasis, and resistance to chemotherapy. Use of the anti-VEGFR2 antibody DC101 enhanced doxorubicin sensitivity at sub-conventional dosing, inhibited tumour growth, decreased development of metastases, and reduced tumour micro-vessel density while increasing the vessel maturation index. These effects were explained primarily through effects on endothelial cells (e.c.s), rather than the tumour cells per se, where DC101 induced e.c. sensitivity to doxorubicin and suppressed e.c. production of MMPs. The p53 tumour suppressor pathway is the most frequently mutated pathway in sarcoma. Recapitulation of wild-type p53 function in sarcoma exerts a number of anti-cancer outcomes such as growth arrest, resensitisation to chemotherapy, suppression of invasion, and attenuation of angiogenesis. Using a modified nude rat-human sarcoma xenograft model for isolated limb perfusion (ILP) delivery of wild-type p53 in a replication deficient adenovirus vector I showed that functionally competent wild-type p53 could be delivered to and detected in human leiomyosarcoma xenografts confirming preclinical feasibility - although not efficacious due to low transgene expression. Viral fibre modification to express the RGD tripeptide motif led to greater viral uptake by sarcoma cells in vitro (transductional targeting) and changing the transgene promoter to a response element active in cells with active telomerase expression restricted the transgene expression to the tumour intracellular environment (transcriptional targeting). Delivery of the fibre-modified, selectively replication proficient oncolytic adenovirus Ad.hTC.GFP/ E1a.RGD by ILP demonstrated a more robust, and tumour-restricted, transgene expression with evidence of anti-sarcoma effect confirmed microscopically. Collaborative studies using the fibre modified phage RGD-4C AAVP confirmed that systemic delivery specifically, efficiently, and repeatedly targets human sarcoma xenografts, binds to αv integrins in tumours, and demonstrates a durable, though heterogeneous, transgene expression of 1-4 weeks. Incorporation of the Herpes Simplex Virus thymidine kinase (HSVtk) transgene into RGD-4C AAVP permitted CT-PET spatial and temporal molecular imaging in vivo of transgene expression and allowed quantification of tumour metabolic activity both before and after interval administration of a systemic cytotoxic with predictable and measurable response to treatment before becoming apparent clinically. These papers further the medical and scientific community’s understanding of the biology of soft tissue sarcoma and report preclinical studies with novel and promising anti- sarcoma therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Research suggests that forensic mental health services and staff can play an important role in the recognition and intervention with attachment-related behaviours to promote engagement and recovery. There is a lack of literature exploring whether the attachment needs of forensic service-users are recognised and, associations between attachment style and factors predictive of recovery. Aims: This study aimed to examine the extent to which service-users and keyworkers agree about service-users’ attachment and to identify whether attachment was associated with service attachment, working alliance, ward climate and recovery. Methods: Twenty-two service-users from low and medium secure forensic services, completed questionnaire measures of their attachment style, service attachment, working alliance, ward climate and experiences of recovery. Nineteen keyworkers completed measures of the service-users attachment style and working alliance. Results: There was strong agreement between service-users and staff for attachment anxiety (ICC=0.71) but poor agreement for attachment avoidance (ICC=0.39). Service attachment was associated with more positive perceptions of staff support (r=0.49) and avoidant attachment was associated with lower ratings of recovery (r=-0.51). Correlations between attachment style and service attachment, working alliance and ward climate were small and non-significant. Conclusions: A focus on staff training to support recognition of the nature and impact of avoidant attachment styles is indicated. The findings suggest that interventions to enhance staff - service-user relationships may be important for service attachment and indeed promotion of a recovery focused orientation amongst service-users high in avoidant attachment may improve wellbeing and outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial diarrhoeal diseases have significant influence on global human health, and are a leading cause of preventable death in the developing world. Enterohaemorrhagic Escherichia coli (EHEC), pathogenic strains of E. coli that carry potent toxins, have been associated with a high number of large-scale outbreaks caused by contaminated food and water sources. This pathotype produces diarrhoea and haemorrhagic colitis in infected humans, and in some patients leads to the development of haemolytic uremic syndrome (HUS), which can result in mortality and chronic kidney disease. A major obstacle to the treatment of EHEC infections is the increased risk of HUS development that is associated with antibiotic treatment, and rehydration and renal support are often the only options available. New treatments designed to prevent or clear E. coli infections and reduce symptoms of illness would therefore have large public health and economic impacts. The three main aims of this thesis were: to explore mouse models for pre-clinical evaluation in vivo of small compounds that inhibit a major EHEC colonisation factor, to assess the production and role of two proteins considered promising candidates for a broad-spectrum vaccine against pathogenic E. coli, and to investigate a novel compound that has recently been identified as a potential inhibitor of EHEC toxin production. As EHEC cannot be safely tested in humans due to the risk of HUS development, appropriate small animal models are required for in vivo testing of new drugs. A number of different mouse models have been developed to replicate different features of EHEC pathogenesis, several of which we investigated with a focus on colonisation mediated by the Type III Secretion System (T3SS), a needle-like structure that translocates bacterial proteins into host cells, resulting in a tight, intimate attachment between pathogen and host, aiding colonisation of the gastrointestinal tract. As E. coli models were found not to depend significantly on the T3SS for colonisation, the Citrobacter rodentium model, a natural mouse pathogen closely related to E. coli, was deemed the most suitable mouse model currently available for in vivo testing of T3SS-targeting compounds. Two bacterial proteins, EaeH (an outer membrane adhesin) and YghJ (a putative secreted lipoprotein), highly conserved surface-associated proteins recently identified as III protective antigens against E. coli infection of mice, were explored in order to determine their suitability as candidates for a human vaccine against pathogenic E. coli. We focused on the expression and function of these proteins in the EHEC O157:H7 EDL933 strain and the adherent-invasive E. coli (AIEC) LF82 strain. Although expression of EaeH by other E. coli pathotypes has recently been shown to be upregulated upon contact with host intestinal cells, no evidence of this upregulation could be demonstrated in our strains. Additionally, while YghJ was produced by the AIEC strain, it was not secreted by bacteria under conditions that other YghJ-expressing E. coli pathotypes do, despite the AIEC strain carrying all the genes required to encode the secretion system it is associated with. While our findings indicate that a vaccine that raises antibodies against EaeH and YghJ may have limited effect on the EHEC and AIEC strains we used, recent studies into these proteins in different E. coli pathogens have suggested they are still excellent candidates for a broadly effective vaccine against E. coli. Finally, we characterised a small lead compound, identified by high-throughput screening as a possible inhibitor of Shiga toxin expression. Shiga toxin production causes both the symptoms of illness and development of HUS, and thus reduction of toxin production, release, or binding to host receptors could therefore be an effective way to treat infections and decrease the risk of HUS. Inhibition of Shiga toxin production by this compound was confirmed, and was shown to be caused by an inhibitory effect on activation of the bacterial SOS response rather than on the Shiga toxin genes themselves. The bacterial target of this compound was identified as RecA, a major regulator of the SOS response, and we hypothesise that the compound binds covalently to its target, preventing oligomerisation of RecA into an activated filament. Altogether, the results presented here provide an improved understanding of these different approaches to combating EHEC infection, which will aid the development of safe and effective vaccines and anti-virulence treatments against EHEC.