3 resultados para Telomere Homeostasis
em Glasgow Theses Service
Resumo:
Telomeres are DNA-protein complexes which cap the ends of eukaryotic linear chromosomes. In normal somatic cells telomeres shorten and become dysfunctional during ageing due to the DNA end replication problem. This leads to activation of signalling pathways that lead to cellular senescence and apoptosis. However, cancer cells typically bypass this barrier to immortalisation in order to proliferate indefinitely. Therefore enhancing our understanding of telomere dysfunction and pathways involved in regulation of the process is essential. However, the pathways involved are highly complex and involve interaction between a wide range of biological processes. Therefore understanding how telomerase dysfunction is regulated is a challenging task and requires a systems biology approach. In this study I have developed a novel methodology for visualisation and analysis of gene lists focusing on the network level rather than individual or small lists of genes. Application of this methodology to an expression data set and a gene methylation data set allowed me to enhance my understanding of the biology underlying a senescence inducing drug and the process of immortalisation respectively. I then used the methodology to compare the effect of genetic background on induction of telomere uncapping. Telomere uncapping was induced in HCT116 WT, p21-/- and p53-/- cells using a viral vector expressing a mutant variant of hTR, the telomerase RNA template. p21-/- cells showed enhanced sensitivity to telomere uncapping. Analysis of a candidate pathway, Mismatch Repair, revealed a role for the process in response to telomere uncapping and that induction of the pathway was p21 dependent. The methodology was then applied to analysis of the telomerase inhibitor GRN163L and synergistic effects of hypoglycaemia with this drug. HCT116 cells were resistant to GRN163L treatment. However, under hypoglycaemic conditions the dose required for ablation of telomerase activity was reduced significantly and telomere shortening was enhanced. Overall this new methodology has allowed our group and collaborators to identify new biology and improve our understanding of processes regulating telomere dysfunction.
Resumo:
Background: Between 1961-1971 vitamin D deficiency was recognized as a public health issue in the UK, because of the lack of effective sunlight and the population mix [1, 2]. In recent years, health care professionals have cited evidence suggesting a re-emergence of the vitamin D deficiency linked to a number of health consequences as a concern [3-6]. Evidence from observational studies has linked low vitamin D status with impairment in glucose homeostasis and immune dysfunction [7-9]. However, interventional studies, particularly those focused on paediatric populations, have been limited and inconsistent. There is a need for detailed studies, to clarify the therapeutic benefits of vitamin D in these important clinical areas. Objective: The aims of this PhD thesis were two-fold. Firstly, to perform preliminary work assessing the association between vitamin D deficiency and bone status, glucose homeostasis and immune function, and to explore any changes in these parameters following short term vitamin D3 replacement therapy. Secondly, to assess the effectiveness of an electronic surveillance system (ScotPSU) as a tool to determine the current incidence of hospital-based presentation of childhood vitamin D deficiency in Scotland. Methods: Active surveillance was performed for a period of two years as a part of an electronic web-based surveillance programme performed by the Scottish Paediatric Surveillance Unit (ScotPSU). The validity of the system was assessed by identifying cases with profound vitamin D deficiency (in Glasgow and Edinburgh) from the regional laboratory. All clinical details were checked against those identified using the surveillance system. Thirty-seven children aged 3 months to 10 years, who had been diagnosed with vitamin D deficiency, were recruited for the bone, glucose and immunity studies over a period of 24 months. Twenty-five samples were analysed for the glucose and bone studies; of these, 18 samples were further analysed for immune study. Treatment consisted of six weeks taking 5000 IU units cholecalciferol orally once a day. At baseline and after completion of treatment, 25 hydroxyvitamin D (25(OH)D), parathyroid hormone (PTH), alkaline phosphatase (ALP), collagen type 1 cross-linked C-telopeptide (CTX), osteocalcin (OCN), calcium, phosphate, insulin, glucose, homeostasis model assessment index, estimated insulin resistance (HOMA IR), glycated hemoglobin (HbA1c), sex hormone binding globulin (SHBG), lipids profiles, T helper 1 (Th1) cytokines (interleukin-2 ( IL-2), tumor necrosis factors-alpha (TNF-α), interferon-gamma (INF-γ)), T helper 2 (Th2) cytokines (interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-6 (IL-6)), T helper 17 (Th17) cytokine (interleukin-17 (IL-17)), Regulatory T (Treg) cytokine (interleukin-10 (IL-10)) and chemokines/cytokines, linked with Th1/Th2 subset balance and/or differentiation (interleukin-8 (IL-8), interleukin-12 (IL-12), eosinophil chemotactic protein ( EOTAXIN), macrophage inflammatory proteins-1beta (MIP-1β), interferon-gamma-induced protein-10 (IP-10), regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemoattractant protein-1(MCP-1)) were measured. Leukoocyte subset analysis was performed for T cells, B cells and T regulatory cells and a luminex assay was used to measure the cytokiens. Results: Between September 2009 and August 2011, 163 cases of vitamin D deficiency were brought to the attention of the ScotPSU, and the majority of cases (n = 82) were reported in Glasgow. The cross-validation checking in Glasgow and Edinburgh over a one-year period revealed only 3 (11%) cases of clearly symptomatic vitamin D deficiency, which had been missed by the ScotPSU survey in Glasgow. While 16 (67%) symptomatic cases had failed to be reported through the ScotPSU survey in Edinburgh. For the 23 children who are included in bone and glucose studies, 22 (96%) children had basal serum 25(OH)D in the deficiency range (< 50 nmol/l) and one (4%) child had serum 25(OH)D in the insufficiency range (51-75 nmol/l). Following vitamin D3 treatment, 2 (9%) children had final serum 25(OH)D lower than 50 nmol/l, 6 (26%) children had final serum 25(OH)D between >50-75 nmol/l, 12 (52%) children reached a final serum 25(OH)D >75-150 nmol/l and finally 3 (13%) exceeded the normal reference range with a final 25(OH)D >150 nmol/l. Markers for remodelling ALP and PTH had significantly decreased (p = 0.001 and <0.0001 for ALP and PTH respectively). In 17 patients for whom insulin and HOMA IR data were available and enrolled in glucose study, significant improvements in insulin resistance (p = 0.04) with a trend toward a reduction in serum insulin (p = 0.05) was observed. Of those 14 children who had their cytokines profile data analysed and enrolled in the immunity study, insulin and HOMA IR data were missed in one child. A significant increase in the main Th2 secreted cytokine IL-4 (p = 0.001) and a tendency for significant increases in other Th2 secreted cytokines IL-5 (p = 0.05) and IL-6 (p = 0.05) was observed following vitamin D3 supplementation. Conclusion: An electronic surveillance system can provide data for studying the epidemiology of vitamin D deficiency. However, it may underestimate the number of positive cases. Improving vitamin D status in vitamin D deficient otherwise healthy children significantly improved their vitamin D deficient status, and was associated with an improvement in bone profile, improvements in insulin resistance and an alteration in main Th2 secreting cytokines.
Resumo:
While much of the study of molecular biology inevitably focuses on the parts of the genome that contain active genes, there are also non-coding regions that nonetheless play an essential role in maintaining genome integrity. One such region are telomeres, which cap the ends of all eukaryotic chromosomes and play an important role in chromosome protection. Telomere loss occurs at each cell division as a result of the ‘end replication problem’ and a relatively short telomere length is indicative of poor biological state. Thus far, the majority of studies on the dynamics and role of telomeres have been biased towards certain taxa. Research to date has mostly focussed on humans, other mammals and birds. There has been far less research on the telomere dynamics of ectotherms. It is important that we do so, especially since ectothermic vertebrates do not seem to down-regulate telomerase expression in the same way as endotherms, suggesting that their telomere dynamics may be less predictable in the later life stages. The main objective of this thesis was therefore to investigate how life history and environmental effects may influence telomere dynamics in Atlantic salmon Salmo salar. I carried out carefully designed experiments, both in the laboratory and in the wild, using a longitudinal approach where possible, in order to address a number of specific questions that are connected to this central theme. In chapter 2, I demonstrate that there can be significant links between parental life history and offspring telomere dynamics. Maternal life history traits, in particular egg size, were most strongly related to offspring telomere length at the embryonic stages. Paternal life history traits, such as early life growth rate, had a greater association with offspring telomere dynamics in the later stages of development. In chapter 3, using a wild Atlantic salmon population, I found that most individuals experienced a reduction in telomere length during the migratory phase of their life cycle; however the relative rate of telomere loss was dependent on sex, with males experiencing a relatively greater loss. Unexpectedly, I also found that juvenile salmon that had the shortest telomeres at the time of outward migration, had the greatest probability of surviving through to the return migration. In chapter 4, again using a wild system involving experimental manipulations of juvenile Atlantic salmon in Scottish streams, I found that telomere length in juvenile fish was influenced by parental traits and by direct environmental effects. Faster-growing fish had shorter telomeres and there was a greater cost (in terms of reduced telomere length) if the growth occurred in a harsher environment. I also found a positive association between offspring telomere length and the growth history of their fathers (but not mothers), represented by the number of years that fathers had spent at sea. Chapter 5 explored the hypotheses that oxidative DNA damage, catalase (CAT) antioxidant activity and cell proliferation rate are underlying mechanisms linking incubation temperature and telomere dynamics in salmon embryos. No evidence was found for any such effects, but telomere lengths in salmon embryos were found to be significantly affected by the temperature of the water in which they were living. There is also evidence that telomere length significantly increases during embryonic development. In summary, this thesis has shown that a complex mix of environmental and parental effects appear to influence telomere dynamics in Atlantic salmon, with parental effects especially evident during early life stages. It also demonstrated that telomeres lengthen through the embryo stages of development before reducing once the fry begin feeding, indicating that the patterns of telomere loss commonly found in endotherms may differ in ectotherms. Reasons for this variation in telomere dynamics are presented in the final Discussion chapter of the thesis.