5 resultados para Systemic Inflammatory Response Syndrome
em Glasgow Theses Service
Resumo:
Pancreaticoduodenectomy with or without adjuvant chemotherapy remains the only modality of possible cure in patients with cancer involving the head of the pancreas and the periampullary region. While mortality rates after pancreaticoduodenectomy have improved considerably over the course of the last century, morbidity remains high. Patient selection is of paramount importance in ensuring that major surgery is offered to individuals who will most benefit from a pancreaticoduodenectomy. Moreover, identifying preoperative risk factors provides potential targets for prehabilitation and optimisation of the patient's physiology before undertaking surgery. In addition to this, early identification of patients who are likely to develop postoperative complications allows for better allocation of critical care resources and more aggressive management high risk patients. Cardiopulmonary exercise testing is becoming an increasingly popular tool in the preoperative risk assessment of the surgical patient. However, very little work has been done to investigate the role of cardiopulmonary exercise testing in predicting complications after pancreaticoduodenectomy. The impact of jaundice, systemic inflammation and other preoperative clinicopathological characteristics on cardiopulmonary exercise physiology has not been studied in detail before in this cohort of patients. The overall aim of the thesis was to examine the relationships between preoperative clinico-pathological characteristics including cardiopulmonary exercise physiology, obstructive jaundice, body composition and systemic inflammation and complications and the post-surgical systemic inflammatory response in patients undergoing pancreaticoduodenectomy. Chapter 1 reviews the existing literature on preoperative cardiopulmonary exercise testing, the impact of obstructive jaundice, perioperative systemic inflammation and the importance of body composition in determining outcomes in patients undergoing major surgery with particular reference to pancreatic surgery. Chapter 2 reports on the role of cardiopulmonary exercise testing in predicting postoperative complications after pancreaticoduodenectomy. The results demonstrate that patients with V˙O2AT less than 10 ml/kg/min are more likely to develop a postoperative pancreatic fistula, stay longer in hospital and less likely to receive adjuvant therapy. These results emphasise the importance of aerobic fitness to recover from the operative stress of major surgery without significant morbidity. Cardiopulmonary exercise testing may prove useful in selecting patients for intensive prehabilitation programmes as well as for other optimisation measures to prepare them for major surgery. Chapter 3 evaluates the relationship between cardiopulmonary exercise physiology and other clinicopathological characteristics of the patient. A detailed analysis of cardiopulmonary exercise test parameters in jaundiced versus non-jaundiced patients demonstrates that obstructive jaundice does not impair cardiopulmonary exercise physiology. This further supports emerging evidence in contemporary literature that jaundiced patients can proceed directly to surgery without preoperative biliary drainage. The results of this study also show an interesting inverse relationship between body mass index and anaerobic threshold which is analysed in more detail in Chapter 4. Chapter 4 examines the relationship between preoperative cardiopulmonary exercise physiology and body composition in depth. All parameters measured at cardiopulmonary exercise test are compared against body composition and body mass index. The results of this chapter report that the current method of reporting V˙O2, both at peak exercise and anaerobic threshold, is biased against obese subjects and advises caution in the interpretation of cardiopulmonary exercise test results in patients with a high BMI. This is particularly important as current evidence in literature suggests that postoperative outcomes in obese subjects are comparable to non-obese subjects while cardiopulmonary exercise test results are also abnormally low in this very same cohort of patients. Chapter 5 analyses the relationship between preoperative clinico-pathological characteristics including systemic inflammation and the magnitude of the postoperative systemic inflammatory response. Obstructive jaundice appears to have an immunosuppressive effect while elevated preoperative CRP and hypoalbuminemia appear to have opposite effects with hypoalbuminemia resulting in a lower response while elevated CRP in the absence of hypoalbuminemia resulted in a greater postoperative systemic inflammatory response. Chapter 6 evaluates the role of the early postoperative systemic inflammatory response in predicting complications after pancreaticoduodenectomy and aims to establish clinically relevant thresholds for C-Reactive Protein for the prediction of complications. The results of this chapter demonstrate that CRP levels as early as the second postoperative day are associated with complications. While post-operative CRP was useful in the prediction of infective complications, this was the case only in patients who did not develop a post-operative pancreatic fistula. The predictive ability of inflammatory markers for infectious complications was blunted in patients with a pancreatic fistula. Chapter 7 summarises the findings of this thesis, their place in current literature and future directions. The results of this thesis add to the current knowledge regarding the complex pathophysiological abnormalities in patients undergoing pancreaticoduodenectomy, with specific emphasis on the interaction between cardiopulmonary exercise physiology, obstructive jaundice, systemic inflammation and postoperative outcomes. The work presented in this thesis lays the foundations for further studies aimed at improving outcomes after pancreaticoduodenectomy through the development of individualised, goal-directed therapies that are initiated well before this morbid yet necessary operation is performed.
Resumo:
Colorectal cancer (CRC) is the third most common cancer in the UK with 41,000 new cases diagnosed in 2011. Despite undergoing potentially curative resection, a significant amount of patients develop recurrence. Biomarkers that aid prognostication or identify patients who are suitable for adjuvant treatments are needed. The TNM staging system does a reasonably good job at offering prognostic information to the treating clinician, but it could be better and identifying methods of improving its accuracy are needed. Tumour progression is based on a complex relationship between tumour behaviour and the hosts’ inflammatory responses. Sustained tumour cell proliferation, evading growth suppressors, resisting apoptosis, replicative immortality, sustained angiogenesis, invasion & metastasis, avoiding immune destruction, deregulated cellular energetics, tumour promoting inflammation and genomic instability & mutation have been identified as hallmarks. These hallmarks are malignant behaviors are what makes the cell cancerous and the more extreme the behaviour the more aggressive the cancer the more likely the risk of a poor outcome. There are two primary genomic instability pathways: Microsatellite Instability (MSI) and Chromosomal Instability (CI) also referred to as Microsatellite Stability (MSS). Tumours arising by these pathways have a predilection for specific anatomical, histological and molecular biological features. It is possible that aberrant molecular expression of genes/proteins that promote malignant behaviors may also act as prognostic and predictive biomarkers, which may offer superior prognostic information to classical prognostic features. Cancer related inflammation has been described as a 7th hallmark of cancer. Despite the systemic inflammatory response (SIR) being associated with more aggressive malignant disease, infiltration by immune cells, particularly CD8+ lymphocytes, at the advancing edge of the tumour have been associated with improved outcome and tumour MSI. It remains unknown if the SIR is associated with tumour MSI and this requires further study. The mechanisms by which colorectal cancer cells locally invade through the bowel remain uncertain, but connective tissue degradation by matrix metalloproteinases (MMPs) such as MMP-9 have been implicated. MMP-9 has been found in the cancer cells, stromal cells and patient circulation. Although tumoural MMP-9 has been associated with poor survival, reports are conflicting and contain relatively small sample sizes. Furthermore, the influence of high serum MMP-9 on survival remains unknown. Src family kinases (SFKs) have been implicated in many adverse cancer cell behaviors. SFKs comprise 9 family members BLK, C-SRC, FGR, FYN, HCK, LCK, LYN, YES, YRK. C-SRC has been the most investigated of all SFKs, but the role of other SFKs in cellular behaviors and their prognostic value remains largely unknown. The development of Src inhibitors, such as Dasatinib, has identified SFKs as a potential therapeutic target for patients at higher risk of poor survival. Unfortunately, clinical trials so far have not been promising but this may reflect inadequate patient selection and SFKs may act as useful prognostic and predictive biomarkers. In chapter 3, the association between cancer related inflammation, tumour MSI, clinicopathological factors and survival was tested in two independent cohorts. A training cohort consisting of n=182 patients and a validation cohort of n=677 patients. MSI tumours were associated with a raised CRP (p=0.003). Hypoalbuminaemia was independently associated with poor overall survival in TNM stage II cancer (HR 3.04 (95% CI 1.44 – 6.43);p=0.004), poor recurrence free survival in TNM stage III cancer (HR 1.86 (95% 1.03 – 3.36);p=0.040) and poor overall survival in CI colorectal cancer (HR 1.49 (95% CI 1.06 – 2.10);p=0.022). Interestingly, MSI tumours were associated with poor overall survival in TNM stage III cancer (HR 2.20 (95% CI 1.10 – 4.37);p=0.025). In chapter 4, the role of MMP-9 in colorectal cancer progression and survival was examined. MMP-9 in the tissue was assessed using IHC and serum expression quantified using ELISA. Serum MMP-9 was associated with cancer cell expression (Spearman’s Correlation Coefficient (SCC) 0.393, p<0.001)) and stromal expression (SCC 0.319, p=0.002). Serum MMP-9 was associated with poor recurrence-free (HR 3.37 (95% CI 1.20 – 9.48);p=0.021) and overall survival (HR 3.16 (95% CI 1.22 – 8.15);p=0.018), but tumour MMP-9 was not survival or MSI status. In chapter 5, the role of SFK expression and activation in colorectal cancer progression and survival was studied. On PCR analysis, although LYN, C-SRC and YES were the most highly expressed, FGR and HCK had higher expression profiles as tumours progressed. Using IHC, raised cytoplasmic FAK (tyr 861) was independently associated with poor recurrence free survival in all cancers (HR 1.48 (95% CI 1.02 – 2.16);p=0.040) and CI cancers (HR 1.50 (95% CI 1.02 – 2.21);p=0.040). However, raised cytoplasmic HCK (HR 2.04 (95% CI 1.11 – 3.76);p=0.022) was independently associated with poor recurrence-free survival in TNM stage II cancers. T84 and HT29 cell lines were used to examine the cellular effects of Dasatinib. Cell viability was assessed using WST-1 assay and apoptosis assessed using an ELISA cell death detection assay. Dasatinib increased T84 tumour cell apoptosis in a dose dependent manner and resulted in reduced expression of nuclear (p=0.008) and cytoplasmic (p=0.016) FAK (tyr 861) expression and increased nuclear FGR expression (p=0.004). The results of this thesis confirm that colorectal cancer is a complex disease that represents several subtypes of cancer based on molecular biological behaviors. This thesis concentrated on features of the disease related to inflammation in terms of genetic and molecular characterisation. MSI cancers are closely associated with systemic inflammation but despite this observation, they retain their relatively improved survival. MMP-9 is a feature of tissue remodeling during inflammation and is also associated with degradation of connective tissue, advanced T-stage and poor outcome when measured in the serum. The lack of stromal quantification due to TMA use rather than full sections makes the value of tumoural MMP-9 immunoreactivity in the prognostication and its association with MSI unknown and requires further study. Finally, SFK activation was also associated with SIR, however, only cytoplasmic HCK was independently associated with poor survival in patients with TNM stage II disease, the group of patients where identifying a novel biomarker is most needed. There is still some way to go before these biomarkers are translated into clinical practice and future work needs to focus on obtaining a reliable and robust scientific technique with validation in an adequately powered independent cohort.
Resumo:
Background: Obesity is not a new disease, with roots that can be traced back to 400 BC. However, with the staggering increase in individuals that are overweight and obese since the 1980s, now over a quarter of individuals in Europe and the Americas are classed as obese. This presents a global health problem that needs to be addressed with novel therapies. It is now well accepted that obesity is a chronic, low-grade inflammatory condition that could predispose individuals to a number of comorbidities. Obesity is associated with cardiovascular diseases (CVDs) and type 2 diabetes (T2D) as part of “the metabolic syndrome,” and as first identified by Dr Vauge, central distribution of white adipose tissue (WAT) is an important risk factor in the development of these diseases. Subsequently, visceral WAT (vWAT) was shown to be an important factor in this association with CVDs and T2D, and increasing inflammation. As the obese WAT expands, mainly through hypertrophy, there is an increase in inflammation that recruits numerous immune cells to the tissue that further exacerbate this inflammation, causing local and systemic inflammatory and metabolic effects. One of the main types of immune cell involved in this pathogenic process is pro-inflammatory M1 adipose tissue macrophages (ATMs). MicroRNAs (miRNAs) are a species of small RNAs that post-transcriptionally regulate gene expression by targeting gene mRNA, causing its degradation or translational repression. These miRNAs are promiscuous, regulating numerous genes and pathways involved in a disease, making them useful therapeutic targets, but also difficult to study. miR-34a has been shown to increase in the serum, liver, pancreas, and subcutaneous (sc)WAT of patients with obesity, non- alcoholic fatty liver disease (NAFLD) and T2D. Additionally, miR-34a has been shown to regulate a number of metabolic and inflammatory genes in numerous cell types, including those in macrophages. However, the role of miR-34a in regulating vWAT metabolism and inflammation is poorly understood. Hypothesis: miR-34a is dysregulated in the adipose tissue during obesity, causing dysregulation of metabolic and inflammatory pathways in adipocytes and ATMs that contribute to adipose inflammation and obesity’s comorbidities, particularly T2D. Method/Results: The role of miR-34a in adipose inflammation was investigated using a murine miR-34a-/- diet-induced obesity model, and primary in vitro models of adipocyte differentiation and inflammatory bone marrow-derived macrophages (BMDMs). miR-34a was shown to be ubiquitously expressed throughout the murine epididymal (e)WAT of obese high-fat diet (HFD)-fed WT mice and ob/ob mice, as well as omental WAT from patients with obesity. Additionally, miR-34a transcripts were increased in the liver and brown adipose tissue (BAT) of ob/ob and HFD-fed WT mice, compared to WT controls. When miR-34a-/- mice were fed HFD ad libitum for 24 weeks they were significantly heavier than their WT counterparts by the end of the study. Ex vivo examinations showed that miR-34a-/- eWAT had a smaller adipocyte area on chow, which significantly increased to WT levels during HFD-feeding. Additionally, miR-34a-/- eWAT showed basal increases in cholesterol and fatty acid metabolism genes Cd36, Hmgcr, Lxrα, Pgc1α, and Fasn. miR-34a-/- iBAT showed basal reductions in Cebpα and Cebpβ, with increased Pgc1α expression during HFD- feeding. The miR-34a-/- liver additionally showed increased basal transcript expression of Pgc1α, suggesting miR-34a may broadly regulate PGC1α. Accompanying the ex vivo changes in cholesterol and fatty acid metabolism genes, in vitro miR-34a-/- white adipocytes showed increased lipid content. An F4/80high macrophage population was identified in HFD-fed miR-34a-/- eWAT, with increased Il-10 transcripts and serum IL-5 protein. Following these ex vivo observations, BMDMs from WT mice upregulated miR-34a expression in response to TNFα stimulation. Additionally, miR-34a-/- BMDMs showed an ablated CXCL1 response to TNFα. Conclusion: These findings suggest miR-34a has a multi-factorial role in controlling a susceptibility to obesity, by regulating inflammatory and metabolic pathways, potentially through regulation of PGC1α.
Resumo:
Spondyloarthropathies (or Spondyloarthritides; SpAs) are a group of heterogeneous but genetically related inflammatory disorders in which ankylosing spondylitis (AS) is considered the prototypic form. Among the genes associated with AS, HLA-B27 allele has the strongest association although the cause is still not clear. Rats transgenic for the human HLA-B27 gene (B27 rats) develop a systemic inflammation mirroring the human SpA symptoms and thus provide a useful model to study the contribution of this MHC class I molecule in the disease development. Of particular interest was the observation of absence of arthritis in B27 rats grown in germ-free conditions and a recent theory suggests that microbial dysbiosis and gut inflammation might play a key role in initiating the HLA-B27-associated diseases. Studies in our laboratory have previously demonstrated that HLA-B27 expression alters the development of the myeloid compartment within the bone marrow (BM) in B27 rat and causes loss of a specific dendritic cell (DC) population involved in self-tolerance mechanisms within the gut. The aim of this thesis was to further analyse the myeloid compartment in B27 rats with a particular focus on the osteoclast progenitors and the bone phenotype and to link this to the gut inflammation. In addition, translational studies analysed peripheral monocyte/pre-osteoclasts in AS patients and teased apart the role of cytokines in in vitro human osteoclast differentiation. To understand the dynamics of the myeloid/monocyte compartment within the B27-associated inflammation, monocytes within the bloodstream and BM of B27 rats were characterised via flow cytometry and their ability to differentiate into osteoclast was assessed in vitro. Moreover, an antibiotic regime was used to reduce the B27 ileitis and to evaluate whether this could affect the migration, the phenotype, and the osteoclastogenic potential of B27 monocytes. B27 animals display a systemic and central increase of “inflammatory” CD43low MOs, which are the main contributors to osteoclastogenesis in vitro. Antibiotic treatment reduced ileitis and also reverted the B27 monocyte phenotype. This was also associated with the reduction of the previous described TNFα-enhancement of osteoclast differentiation from B27 BM precursors. These evidences support the idea that in genetically susceptible individuals inflammation in the gut might influence the myeloid compartment within the BM; in other terms, pre-emptively educate precursor cells to acquire specific phenotype end functions after being recruited into the tissue. This might explain the enhanced differentiation of osteoclast from B27 BM progenitors and thus the HLA-B27-associated bone loss. The data shown in this thesis suggest a link between the immunity within the gut and BM haematopoiesis. This provides an attractive and novel research prospective that could help not only to increase the understanding of the HLA-B27-associated aetiopathogenesis but also to unravel the cellular crosstalk that allows the mucosal immunity to program central cell differentiation. Human translational studies on monocyte subsets, cytokines and cytokine network in AS osteoclastogenesis evidenced altered osteoclast differentiation in the presence of IL-22 although no differences in the phenotype and functions of circulating CD14+ monocytes were observed. In addition, studies on the role of TNFα and TNFRs showed a dual role of this inflammatory cytokine in the human OC differentiation. In particular, the activation of TNFR1 in monocytes in early osteoclastogenesis inhibits OC differentiation while TNFα-biasing for TNFR2 on osteoclast precursors mediates the osteoclastogenic effect. Whether similar mechanisms are involved in the TNFα-mediated joint destruction in human rheumatic diseases needs further investigations. This could contribute to the development of novel and more specific anti-TNFα agents for the treatment of bone erosion. In conclusion, taken together my studies support the idea of a crosstalk between the periphery and the central system during the inflammatory response and provide new insights to the mechanisms behind the enhancement of osteoclastogenesis in B27-associated disorders.
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in equine veterinary practice. These drugs exert their effect by inhibiting cyclooxygenase (COX) enzymes, which control prostaglandin production, a major regulator of tissue perfusion. Two isoforms of COX enzymes exist: COX-1 is physiologically present in tissues, while COX-2 is up-regulated during inflammation and has been indicated as responsible for the negative effects of an inflammatory response. Evidence suggests that NSAIDs that inhibit only COX-2, preserving the physiological function of COX-1 might have a safer profile. Studies that evaluate the effect of NSAIDs on COX enzymes are all performed under experimental conditions and none uses actual clinical patients. The biochemical investigations in this work focus on describing the effect on COX enzymes activity of flunixin meglumine and phenylbutazone, two non-selective COX inhibitors and firocoxib, a COX-2 selective inhibitor, in clinical patients undergoing elective surgery. A separate epidemiological investigation was aimed at describing the impact that the findings of biochemical data have on a large population of equids. Electronic medical records (EMRs) from 454,153 equids were obtained from practices in the United Kingdom, United States of America and Canada. Information on prevalence and indications for NSAIDs use was extracted from the EMRs via a text mining technique, improved from the literature and described and validated within this Thesis. Further the prevalence of a clinical sign compatible with NSAID toxicity, such as diarrhoea, is reported along with analysis evaluating NSAID administration in light of concurrent administration of other drugs and comorbidities. This work confirms findings from experimental settings that NSAIDs firocoxib is COX-2 selective and that flunixin meglumine and phenylbutazone are non-selective COX inhibitors and therefore their administration carries a greater risk of toxicity. However the impact of this finding needs to be interpreted with caution as epidemiological data suggest that the prevalence of toxicity is in fact small and the use of these drugs at the labelled dose is quite safe.