2 resultados para Steel and Adhesive

em Glasgow Theses Service


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis examines the manufacture, use, exchange (including gift exchange), collecting and commodification of German medals and badges from the early 18th century until the present-day, with particular attention being given to the symbols that were deployed by the National Socialist German Workers’ Party (NSDAP) between 1919 and 1945. It does so by focusing in particular on the construction of value through insignia, and how such badges and their symbolic and monetary value changed over time. In order to achieve this, the thesis adopts a chronological structure, which encompasses the creation of Prussia in 1701, the Napoleonic wars and the increased democratisation of military awards such as the Iron Cross during the Great War. The collapse of the Kaiserreich in 1918 was the major factor that led to the creation of the NSDAP under the eventual strangle-hold of Hitler, a fundamentally racist and anti-Semitic movement that continued the German tradition of awarding and wearing badges. The traditional symbols of Imperial Germany, such as the eagle, were then infused with the swastika, an emblem that was meant to signify anti-Semitism, thus creating a hybrid identity. This combination was then replicated en-masse, and eventually eclipsed all the symbols that had possessed symbolic significance in Germany’s past. After Hitler was appointed Chancellor in 1933, millions of medals and badges were produced in an effort to create a racially based “People’s Community”, but the steel and iron that were required for munitions eventually led to substitute materials being utilised and developed in order to manufacture millions of politically oriented badges. The Second World War unleashed Nazi terror across Europe, and the conscripts and volunteers who took part in this fight for living-space were rewarded with medals that were modelled on those that had been instituted during Imperial times. The colonial conquest and occupation of the East by the Wehrmacht, the Order Police and the Waffen-SS surpassed the brutality of former wars that finally culminated in the Holocaust, and some of these horrific crimes and the perpetrators of them were perversely rewarded with medals and badges. Despite Nazism being thoroughly discredited, many of the Allied soldiers who occupied Germany took part in the age-old practice of obtaining trophies of war, which reconfigured the meaning of Nazi badges as souvenirs, and began the process of their increased commodification on an emerging secondary collectors’ market. In order to analyse the dynamics of this market, a “basket” of badges is examined that enables a discussion of the role that aesthetics, scarcity and authenticity have in determining the price of the artefacts. In summary, this thesis demonstrates how the symbolic, socio-economic and exchange value of German military and political medals and badges has changed substantially over time, provides a stimulus for scholars to conduct research in this under-developed area, and encourages collectors to investigate the artefacts that they collect in a more historically contextualised manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fire has been always a major concern for designers of steel and concrete structures. Designing fire-resistant structural elements is not an easy task due to several limitations such as the lack of fire-resistant construction materials. Concrete reinforcement cover and external insulation are the most commonly adopted systems to protect concrete and steel from overheating, while spalling of concrete is minimised by using HPFRC instead of standard concrete. Although these methodologies work very well for low rise concrete structures, this is not the case for high-rise and inaccessible buildings where fire loading is much longer. Fire can permanently damage structures that cost a lot of money. This is unsafe and can lead to loss of life. In this research, the author proposes a new type of main reinforcement for concrete structures which can provide better fire-resistance than steel or FRP re-bars. This consists of continuous braided fibre rope, generally made from fire-resistant materials such as carbon or glass fibre. These fibres have excellent tensile strengths, sometimes in excess of ten times greater than steel. In addition to fire-resistance, these ropes can produce lighter and corrosive resistant structures. Avoiding the use of expensive resin binders, fibres are easily bound together using braiding techniques, ensuring that tensile stress is evenly distributed throughout the reinforcement. In order to consider braided ropes as a form of reinforcement it is first necessary to establish the mechanical performance at room temperature and investigate the pull-out resistance for both unribbed and ribbed ropes. Ribbing of ropes was achieved by braiding the rope over a series of glass beads. Adhesion between the rope and concrete was drastically improved due to ribbing, and further improved by pre-stressing ropes and reducing the slacked fibres. Two types of material have been considered for the ropes: carbon and aramid. An implicit finite element approach is proposed to model braided fibres using Total Lagrangian formulation, based on the theory of small strains and large rotations. Modelling tows and strands as elastic transversely isotropic materials was a good assumption when stiff and brittle fibres such as carbon and glass fibres are considered. The rope-to-concrete and strand-to-strand bond interaction/adhesion was numerically simulated using newly proposed hierarchical higher order interface elements. Elastic and linear damage cohesive models were used effectively to simulate non-penetrative 'free' sliding interaction between strands, and the adhesion between ropes and concrete respectively. Numerical simulation showed similar de-bonding features when compared with experimental pull-out results of braided ribbed rope reinforced concrete.