3 resultados para Social climate

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine ecosystems are facing a diverse range of threats, including climate change, prompting international efforts to safeguard marine biodiversity through the use of spatial management measures. Marine Protected Areas (MPAs) have been implemented as a conservation tool throughout the world, but their usefulness and effectiveness is strongly related to climate change. However, few MPA programmes have directly considered climate change in the design, management or monitoring of an MPA network. Under international obligations, EU, UK and national targets, Scotland has developed an MPA network that aims to protect marine biodiversity and contribute to the vision of a clean, healthy and productive marine environment. This is the first study to critically analyse the Scottish MPA process and highlight areas which may be improved upon in further iterations of the network in the context of climate change. Initially, a critical review of the Scottish MPA process considered how ecological principles for MPA network design were incorporated into the process, how stakeholder perceptions were considered and crucially what consideration was given to the influence of climate change on the eventual effectiveness of the network. The results indicated that to make a meaningful contribution to marine biodiversity protection for Europe the Scottish MPA network should: i) fully adopt best practice ecological principles ii) ensure effective protection and iii) explicitly consider climate change in the management, monitoring and future iterations of the network. However, this review also highlighted the difficulties of incorporating considerations of climate change into an already complex process. A series of international case studies from British Columbia, Canada; central California, USA; the Great Barrier Reef, Australia and the Hauraki Gulf, New Zealand, were then conducted to investigate perceptions of how climate change has been considered in the design, implementation, management and monitoring of MPAs. The key lessons from this study included: i) strictly protected marine reserves are considered essential for climate change resilience and will be necessary as scientific reference sites to understand climate change effects ii) adaptive management of MPA networks is important but hard to implement iii) strictly protected reserves managed as ecosystems are the best option for an uncertain future. This work provides new insights into the policy and practical challenges MPA managers face under climate change scenarios. Based on the Scottish and international studies, the need to facilitate clear communication between academics, policy makers and stakeholders was recognised in order to progress MPA policy delivery and to ensure decisions were jointly formed and acceptable. A Delphi technique was used to develop a series of recommendations for considering climate change in Scotland’s MPA process. The Delphi participant panel was selected for their knowledge of the Scottish MPA process and included stakeholders, policy makers and academics with expertise in MPA research. The results from the first round of the Delphi technique suggested that differing views of success would likely influence opinions regarding required management of MPAs, and in turn, the data requirements to support management action decisions. The second round of the Delphi technique explored this further and indicated that there was a fundamental dichotomy in panellists’ views of a successful MPA network depending upon whether they believed the MPAs should be strictly protected or allow for sustainable use. A third, focus group round of the Delphi Technique developed a feature-based management scenario matrix to aid in deciding upon management actions in light of changes occurring in the MPA network. This thesis highlights that if the Scottish MPA network is to fulfil objectives of conservation and restoration, the implications of climate change for the design, management and monitoring of the network must be considered. In particular, there needs to be a greater focus on: i) incorporating ecological principles that directly address climate change ii) effective protection that builds resilience of the marine and linked social environment iii) developing a focused, strong and adaptable monitoring framework iv) ensuring mechanisms for adaptive management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The potential impacts of climate change and environmental variability are already evident in most parts of the world, which is witnessing increasing temperature rates and prolonged flood or drought conditions that affect agriculture activities and nature-dependent livelihoods. This study was conducted in Mwanga District in the Kilimanjaro region of Tanzania to assess the nature and impacts of climate change and environmental variability on agriculture-dependent livelihoods and the adaptation strategies adopted by small-scale rural farmers. To attain its objective, the study employed a mixed methods approach in which both qualitative and quantitative techniques were used. The study shows that farmers are highly aware of their local environment and are conscious of the ways environmental changes affect their livelihoods. Farmers perceived that changes in climatic variables such as rainfall and temperature had occurred in their area over the period of three decades, and associated these changes with climate change and environmental variability. Farmers’ perceptions were confirmed by the evidence from rainfall and temperature data obtained from local and national weather stations, which showed that temperature and rainfall in the study area had become more variable over the past three decades. Farmers’ knowledge and perceptions of climate change vary depending on the location, age and gender of the respondents. The findings show that the farmers have limited understanding of the causes of climatic conditions and environmental variability, as some respondents associated climate change and environmental variability with social, cultural and religious factors. This study suggests that, despite the changing climatic conditions and environmental variability, farmers have developed and implemented a number of agriculture adaptation strategies that enable them to reduce their vulnerability to the changing conditions. The findings show that agriculture adaptation strategies employ both planned and autonomous adaptation strategies. However, the study shows that increasing drought conditions, rainfall variability, declining soil fertility and use of cheap farming technology are among the challenges that limit effective implementation of agriculture adaptation strategies. This study recommends further research on the varieties of drought-resilient crops, the development of small-scale irrigation schemes to reduce dependence on rain-fed agriculture, and the improvement of crop production in a given plot of land. In respect of the development of adaptation strategies, the study recommends the involvement of the local farmers and consideration of their knowledge and experience in the farming activities as well as the conditions of their local environment. Thus, the findings of this study may be helpful at various levels of decision making with regard to the development of climate change and environmental variability policies and strategies towards reducing farmers’ vulnerability to current and expected future changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The East Asian Monsoon (EAM) is an active component of the global climate system and has a profound social and economic impact in East Asia and its surrounding countries. Its impact on regional hydrological processes may influence society through industrial water supplies, food productivity and energy use. In order to predict future rates of climate change, reliable and accurate reconstructions of regional temperature and rainfall are required from all over the world to test climate models and better predict future climate variability. Hokkaido is a region which has limited palaeo-climate data and is sensitive to climate change. Instrumental data show that the climate in Hokkaido is influenced by the East Asian Monsoon (EAM), however, instrumental data is limited to the past ~150 years. Therefore down-core climate reconstructions, prior to instrumental records, are required to provide a better understanding of the long-term behaviour of the climate drivers (e.g. the EAM, Westerlies, and teleconnections) in this region. The present study develops multi-proxy reconstructions to determine past climatic and hydrologic variability in Japan over the past 1000 years and aid in understanding the effects of the EAM and the Westerlies independently and interactively. A 250-cm long sediment core from Lake Toyoni, Hokkaido was retrieved to investigate terrestrial and aquatic input, lake temperature and hydrological changes over the past 1000-years within Lake Toyoni and its catchment using X-Ray Fluorescence (XRF) data, alkenone palaeothermometry, the molecular and hydrogen isotopic composition of higher plant waxes (δD(HPW)). Here, we conducted the first survey for alkenone biomarkers in eight lakes in the Hokkaido, Japan. We detected the occurrence of alkenones within the sediments of Lake Toyoni. We present the first lacustrine alkenone record from Japan, including genetic analysis of the alkenone producer. C37 alkenone concentrations in surface sediments are 18µg C37 g−1 of dry sediment and the dominant alkenone is C37:4. 18S rDNA analysis revealed the presence of a single alkenone producer in Lake Toyoni and thus a single calibration is used for reconstructing lake temperature based on alkenone unsaturation patterns. Temperature reconstructions over the past 1000 years suggest that lake water temperatures varies between 8 and 19°C which is in line with water temperature changes observed in the modern Lake Toyoni. The alkenone-based temperature reconstruction provides evidence for the variability of the EAM over the past 1000 years. The δD(HPW) suggest that the large fluctuations (∼40‰) represent changes in temperature and source precipitation in this region, which is ultimately controlled by the EAM system and therefore a proxy for the EAM system. In order to complement the biomarker reconstructions, the XRF data strengthen the lake temperature and hydrological reconstructions by providing information on past productivity, which is controlled by the East Asian Summer monsoon (EASM) and wind input into Lake Toyoni, which is controlled by the East Asian Winter Monsoon (EAWM) and the Westerlies. By combining the data generated from XRF, alkenone palaeothermometry and the δD(HPW) reconstructions, we provide valuable information on the EAM and the Westerlies, including; the timing of intensification and weakening, the teleconnections influencing them and the relationship between them. During the Medieval Warm Period (MWP), we find that the EASM dominated and the EAWM was suppressed, whereas, during the Little Ice Age (LIA), the influence of the EAWM dominated with time periods of increased EASM and Westerlies intensification. The El Niño Southern Oscillation (ENSO) significantly influenced the EAM; a strong EASM occurred during El Niño conditions and a strong EAWM occurred during La Niña. The North Atlantic Oscillation, on the other hand, was a key driver of the Westerlies intensification; strengthening of the Westerlies during a positive NAO phase and weakening of the Westerlies during a negative NAO phase. A key finding from this study is that our data support an anti-phase relationship between the EASM and the EAWM (e.g. the intensification of the EASM and weakening of the EAWM and vice versa) and that the EAWM and the Westerlies vary independently from each other, rather than coincide as previously suggested in other studies.