2 resultados para Secular change, Body proportions, Japan, Children, BMI
em Glasgow Theses Service
Resumo:
Background: Autoimmune encephalitis (AE) occurs in response to an antibody-mediated central nervous system disease and can lead to significant neurodisability. Prior research on family adjustment has described a reciprocal relationship between caregiver functioning, distress and clinical outcome in parents and children with encephalitis. There has been no previous research exploring the experiences of caregivers with a child with AE. Aims: To explore the perspectives of parents and/or caregivers with a child diagnosed with AE regarding (i) their own adjustment from hospital admission to post-discharge, and (ii) their experiences of care and service provision. Methods: A purposive sampling approach was used. Five parents of children with AE participated in a semi-structured interview exploring their experiences of caring for their child and service provision during acute care and post-discharge. Interpretative Phenomenological Analysis (IPA) was used to analyse the transcripts. Main findings and conclusions: Four shared super-ordinate themes with related subthemes emerged: (a) uncertainty, (b) managing our recovery, (c) changes in my child, (d) experiences of service provision. Participants reported emotional distress, often underpinned by recurrent experiences of uncertainty, and ‘loss’ of the previous child, and mediated by coping strategies and social support. While an overall positive experience of inpatient services was reported, parents often perceived post-discharge services as lacking in co-ordination, communication and formal follow-up, resulting in unmet support needs. Implications and recommendations for services, practitioners and future research are discussed.
Resumo:
Background: Body composition is affected by diseases, and affects responses to medical treatments, dosage of medicines, etc., while an abnormal body composition contributes to the causation of many chronic diseases. While we have reliable biochemical tests for certain nutritional parameters of body composition, such as iron or iodine status, and we have harnessed nuclear physics to estimate the body’s content of trace elements, the very basic quantification of body fat content and muscle mass remains highly problematic. Both body fat and muscle mass are vitally important, as they have opposing influences on chronic disease, but they have seldom been estimated as part of population health surveillance. Instead, most national surveys have merely reported BMI and waist, or sometimes the waist/hip ratio; these indices are convenient but do not have any specific biological meaning. Anthropometry offers a practical and inexpensive method for muscle and fat estimation in clinical and epidemiological settings; however, its use is imperfect due to many limitations, such as a shortage of reference data, misuse of terminology, unclear assumptions, and the absence of properly validated anthropometric equations. To date, anthropometric methods are not sensitive enough to detect muscle and fat loss. Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health disease and during weight loss through; 1. evaluating and critiquing the literature, to identify the best-published prediction equations for adipose/fat and muscle mass estimation; 2. to derive and validate adipose tissue and muscle mass prediction equations; and 3.to evaluate the prediction equations along with anthropometric indices and the best equations retrieved from the literature in health, metabolic illness and during weight loss. Methods: a Systematic review using Cochrane Review method was used for reviewing muscle mass estimation papers that used MRI as the reference method. Fat mass estimation papers were critically reviewed. Mixed ethnic, age and body mass data that underwent whole body magnetic resonance imaging to quantify adipose tissue and muscle mass (dependent variable) and anthropometry (independent variable) were used in the derivation/validation analysis. Multiple regression and Bland-Altman plot were applied to evaluate the prediction equations. To determine how well the equations identify metabolic illness, English and Scottish health surveys were studied. Statistical analysis using multiple regression and binary logistic regression were applied to assess model fit and associations. Also, populations were divided into quintiles and relative risk was analysed. Finally, the prediction equations were evaluated by applying them to a pilot study of 10 subjects who underwent whole-body MRI, anthropometric measurements and muscle strength before and after weight loss to determine how well the equations identify adipose/fat mass and muscle mass change. Results: The estimation of fat mass has serious problems. Despite advances in technology and science, prediction equations for the estimation of fat mass depend on limited historical reference data and remain dependent upon assumptions that have not yet been properly validated for different population groups. Muscle mass does not have the same conceptual problems; however, its measurement is still problematic and reference data are scarce. The derivation and validation analysis in this thesis was satisfactory, compared to prediction equations in the literature they were similar or even better. Applying the prediction equations in metabolic illness and during weight loss presented an understanding on how well the equations identify metabolic illness showing significant associations with diabetes, hypertension, HbA1c and blood pressure. And moderate to high correlations with MRI-measured adipose tissue and muscle mass before and after weight loss. Conclusion: Adipose tissue mass and to an extent muscle mass can now be estimated for many purposes as population or groups means. However, these equations must not be used for assessing fatness and categorising individuals. Further exploration in different populations and health surveys would be valuable.