2 resultados para Secondary analysis

em Glasgow Theses Service


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: The aim of the thesis was to identify verbal descriptors of cancer induced bone pain (CIBP) and neuropathic cancer pain (NCP). An examination of the verbal descriptors associated with these two pain syndromes further considered the relationship between common verbal descriptors, cancer type, performance status and analgesia. Methods: The project was conducted in two phases; Phase one was a systematic review of the literature to examine current evidence of verbal descriptors in CIBP and NCP. Phase two utilised secondary data analysis methodology. Data from 120 patients with confirmed CIBP and 61 patients with confirmed NCP were deemed eligible for entry into a de novo database for secondary analysis. Key descriptive data were considered such as gender, ECOG and pain scores to characterise the patient population. Verbal descriptors of CIBP and NCP were considered in detail across the secondary de novo database. Results: Gender was not identified as a diagnostic characteristic of CIBP and NCP with similar distribution across prevalence of pain reporting and also pain severity. Patients with breast (n=52,43.3%), prostate (n=35,29.2%) and lung (n=14,11.7%) cancer were found to be at an increased risk of CIBP. Those with NCP more was found more commonly among patients with breast cancer (n=21,34.4%). Patients with CIBP were found to have an ECOG performance of 1 (n=49, 40.8%) or 2 (n=43, 35.8%) which was lower than those with NCP with an ECOG of 0 (n=32, 52.5%) or 2 (n=18, 29.5%). Comparisons were made across analgesia and treatment options for CIBP and NCP. Patients with CIBP received a greater variety of treatment options including bisphosphonates and radiotherapy while patients with NCP were more commonly treated with analgesia alone. Patients with CIBP and NCP were taking strong opioids, however those with NCP (n=45, 73.8%) were more likely to utilise strong opioids than those with CIBP (n=61, 50.8%). It was noted that those with NCP required a daily morphine equivalence of almost 50% higher than those with CIBP. Average consumption of opioids was 155.6mg, for patients with NCP, compared to 76mg in patients with CIBP. Common verbal descriptors of CIBP and NCP were identified. The most common verbal descriptors for CIBP were aching, gnawing and throbbing and the most common verbal descriptors of NCP were aching, tender and sharp. Of the most common 6 descriptors for CIBP and NCP only one descriptor was unique to each pain type, gnawing for CIBP and stabbing for NCP. Conclusions: Patients with CIBP and NCP use similar verbal descriptors to characterise their pain with gnawing being unique to CIBP and stabbing being unique to NCP in the data considered within project. Further research is required to explore verbal descriptors which are both common and unique to CIBP and NCP. Further exploration of verbal descriptors would assist development of a comprehensive pain assessment tool which would enhance pain assessment for nurses, clinicians and patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The folding and targeting of membrane proteins poses a major challenge to the cell, as they must remain insertion competent while their highly hydrophobic transmembrane (TM) domains are transferred from the ribosome, through the aqueous cytosol and into the lipid bilayer. The biogenesis of a mature membrane protein takes place through the insertion and integration into the lipid bilayer. A number of TM proteins have been shown to gain some degree of secondary structure within the ribosome tunnel and to retain this conformation throughout maturation. Although studies into the folding and targeting of a number of membrane proteins have been carried out to date, there is little information on one of the largest class of eukaryotic membrane proteins; the G-protein-coupled receptors (GPCRs). This project studies the early folding events of the human ortholog of GPR35. To analyse the structure of the 1st TM domain, intermediates were generated and assessed by the biochemical method of pegylation (PEG-MAL). A structurally-similar microbial opsin (Bacterioopsin) was also used to investigate the differences in the early protein folding within eukaryotic and prokaryotic translation systems. Results showed that neither the 1st TM domain of GPR35 nor Bacterioopsin were capable of compacting in the ribosome tunnel before their N-terminus reached the ribosome exit point. The results for this assay remained consistent whether the proteins were translated in a eukaryotic or prokaryotic translation system. To examine the communication mechanism between the ribosome, the nascent chain and the protein targeting pathway, crosslinking experiments were carried out using the homobifunctional lysine cross-linker BS3. Specifically, the data generated here show that the nascent chain of GPR35 reaches the ribosomal protein uL23 in an extended conformation and interacts with the SRP protein as it exits the ribosome tunnel. This confirms the role of SRP in the co-translational targeting of GPR35. Using these methods insights into the early folding of GPCRs has been obtained. Further experiments using site-directed mutagenesis to reduce hydrophobicity in the 1st TM domain of GPR35, highlighted the mechanisms by which GPCRs are targeted to the endoplasmic reticulum. Confirming that hydrophobicity within the signal anchor sequence is essential of SRP-dependent targeting. Following the successful interaction of the nascent GPR35 and SRP, GPR35 is successfully targeted to ER membranes, shown here as dog pancreas microsomes (DPMs). Glycosylation of the GPR35 N-terminus was used to determine nascent chain structure as it is inserted into the ER membrane. These glycosylation experiments confirm that TM1 has obtained its compacted state whilst residing in the translocon. Finally, a site-specific cross-linking approach using the homobifunctional cysteine cross-linker, BMH, was used to study the lateral integration of GPR35 into the ER. Cross-linking of GPR35 TM1 and TM2 could be detected adjacent to a protein of ~45kDa, believed to be Sec61α. The loss of this adduct, as the nascent chain extends, showed the lateral movement of GPR35 TM1 from the translocon was dependent on the subsequent synthesis of TM2.