2 resultados para Search Engines

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates how web search evaluation can be improved using historical interaction data. Modern search engines combine offline and online evaluation approaches in a sequence of steps that a tested change needs to pass through to be accepted as an improvement and subsequently deployed. We refer to such a sequence of steps as an evaluation pipeline. In this thesis, we consider the evaluation pipeline to contain three sequential steps: an offline evaluation step, an online evaluation scheduling step, and an online evaluation step. In this thesis we show that historical user interaction data can aid in improving the accuracy or efficiency of each of the steps of the web search evaluation pipeline. As a result of these improvements, the overall efficiency of the entire evaluation pipeline is increased. Firstly, we investigate how user interaction data can be used to build accurate offline evaluation methods for query auto-completion mechanisms. We propose a family of offline evaluation metrics for query auto-completion that represents the effort the user has to spend in order to submit their query. The parameters of our proposed metrics are trained against a set of user interactions recorded in the search engine’s query logs. From our experimental study, we observe that our proposed metrics are significantly more correlated with an online user satisfaction indicator than the metrics proposed in the existing literature. Hence, fewer changes will pass the offline evaluation step to be rejected after the online evaluation step. As a result, this would allow us to achieve a higher efficiency of the entire evaluation pipeline. Secondly, we state the problem of the optimised scheduling of online experiments. We tackle this problem by considering a greedy scheduler that prioritises the evaluation queue according to the predicted likelihood of success of a particular experiment. This predictor is trained on a set of online experiments, and uses a diverse set of features to represent an online experiment. Our study demonstrates that a higher number of successful experiments per unit of time can be achieved by deploying such a scheduler on the second step of the evaluation pipeline. Consequently, we argue that the efficiency of the evaluation pipeline can be increased. Next, to improve the efficiency of the online evaluation step, we propose the Generalised Team Draft interleaving framework. Generalised Team Draft considers both the interleaving policy (how often a particular combination of results is shown) and click scoring (how important each click is) as parameters in a data-driven optimisation of the interleaving sensitivity. Further, Generalised Team Draft is applicable beyond domains with a list-based representation of results, i.e. in domains with a grid-based representation, such as image search. Our study using datasets of interleaving experiments performed both in document and image search domains demonstrates that Generalised Team Draft achieves the highest sensitivity. A higher sensitivity indicates that the interleaving experiments can be deployed for a shorter period of time or use a smaller sample of users. Importantly, Generalised Team Draft optimises the interleaving parameters w.r.t. historical interaction data recorded in the interleaving experiments. Finally, we propose to apply the sequential testing methods to reduce the mean deployment time for the interleaving experiments. We adapt two sequential tests for the interleaving experimentation. We demonstrate that one can achieve a significant decrease in experiment duration by using such sequential testing methods. The highest efficiency is achieved by the sequential tests that adjust their stopping thresholds using historical interaction data recorded in diagnostic experiments. Our further experimental study demonstrates that cumulative gains in the online experimentation efficiency can be achieved by combining the interleaving sensitivity optimisation approaches, including Generalised Team Draft, and the sequential testing approaches. Overall, the central contributions of this thesis are the proposed approaches to improve the accuracy or efficiency of the steps of the evaluation pipeline: the offline evaluation frameworks for the query auto-completion, an approach for the optimised scheduling of online experiments, a general framework for the efficient online interleaving evaluation, and a sequential testing approach for the online search evaluation. The experiments in this thesis are based on massive real-life datasets obtained from Yandex, a leading commercial search engine. These experiments demonstrate the potential of the proposed approaches to improve the efficiency of the evaluation pipeline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conventional web search engines are centralised in that a single entity crawls and indexes the documents selected for future retrieval, and the relevance models used to determine which documents are relevant to a given user query. As a result, these search engines suffer from several technical drawbacks such as handling scale, timeliness and reliability, in addition to ethical concerns such as commercial manipulation and information censorship. Alleviating the need to rely entirely on a single entity, Peer-to-Peer (P2P) Information Retrieval (IR) has been proposed as a solution, as it distributes the functional components of a web search engine – from crawling and indexing documents, to query processing – across the network of users (or, peers) who use the search engine. This strategy for constructing an IR system poses several efficiency and effectiveness challenges which have been identified in past work. Accordingly, this thesis makes several contributions towards advancing the state of the art in P2P-IR effectiveness by improving the query processing and relevance scoring aspects of a P2P web search. Federated search systems are a form of distributed information retrieval model that route the user’s information need, formulated as a query, to distributed resources and merge the retrieved result lists into a final list. P2P-IR networks are one form of federated search in routing queries and merging result among participating peers. The query is propagated through disseminated nodes to hit the peers that are most likely to contain relevant documents, then the retrieved result lists are merged at different points along the path from the relevant peers to the query initializer (or namely, customer). However, query routing in P2P-IR networks is considered as one of the major challenges and critical part in P2P-IR networks; as the relevant peers might be lost in low-quality peer selection while executing the query routing, and inevitably lead to less effective retrieval results. This motivates this thesis to study and propose query routing techniques to improve retrieval quality in such networks. Cluster-based semi-structured P2P-IR networks exploit the cluster hypothesis to organise the peers into similar semantic clusters where each such semantic cluster is managed by super-peers. In this thesis, I construct three semi-structured P2P-IR models and examine their retrieval effectiveness. I also leverage the cluster centroids at the super-peer level as content representations gathered from cooperative peers to propose a query routing approach called Inverted PeerCluster Index (IPI) that simulates the conventional inverted index of the centralised corpus to organise the statistics of peers’ terms. The results show a competitive retrieval quality in comparison to baseline approaches. Furthermore, I study the applicability of using the conventional Information Retrieval models as peer selection approaches where each peer can be considered as a big document of documents. The experimental evaluation shows comparative and significant results and explains that document retrieval methods are very effective for peer selection that brings back the analogy between documents and peers. Additionally, Learning to Rank (LtR) algorithms are exploited to build a learned classifier for peer ranking at the super-peer level. The experiments show significant results with state-of-the-art resource selection methods and competitive results to corresponding classification-based approaches. Finally, I propose reputation-based query routing approaches that exploit the idea of providing feedback on a specific item in the social community networks and manage it for future decision-making. The system monitors users’ behaviours when they click or download documents from the final ranked list as implicit feedback and mines the given information to build a reputation-based data structure. The data structure is used to score peers and then rank them for query routing. I conduct a set of experiments to cover various scenarios including noisy feedback information (i.e, providing positive feedback on non-relevant documents) to examine the robustness of reputation-based approaches. The empirical evaluation shows significant results in almost all measurement metrics with approximate improvement more than 56% compared to baseline approaches. Thus, based on the results, if one were to choose one technique, reputation-based approaches are clearly the natural choices which also can be deployed on any P2P network.