2 resultados para Ratings of perceived exertion
em Glasgow Theses Service
Resumo:
It is well known that self-generated stimuli are processed differently from externally generated stimuli. For example, many people have noticed since childhood that it is very difficult to make a self-tickling. In the auditory domain, self-generated sounds elicit smaller brain responses as compared to externally generated sounds, known as the sensory attenuation (SA) effect. SA is manifested in reduced amplitudes of evoked responses as measured through MEEG, decreased firing rates of neurons and a lower level of perceived loudness for self-generated sounds. The predominant explanation for SA is based on the idea that self-generated stimuli are predicted (e.g., the forward model account). It is the nature of their predictability that is crucial for SA. On the contrary, the sensory gating account emphasizes a general suppressive effect of actions on sensory processing, regardless of the predictability of the stimuli. Both accounts have received empirical support, which suggests that both mechanisms may exist. In chapter 2, three behavioural studies concerning the influence of motor activation on auditory perception were presented. Study 1 compared the effect of SA and attention in an auditory detection task and showed that SA was present even when substantial attention was paid to unpredictable stimuli. Study 2 compared the loudness perception of tones generated by others between Chinese and British participants. Compared to externally generated tones, a decrease in perceived loudness for others generated tones was found among Chinese but not among the British. In study 3, partial evidence was found that even when reading words that are related to action, auditory detection performance was impaired. In chapter 3, the classic SA effect of M100 suppression was replicated with MEG in study 4. With time-frequency analysis, a potential neural information processing sequence was found in auditory cortex. Prior to the onset of self-generated tones, there was an increase of oscillatory power in the alpha band. After the stimulus onset, reduced gamma power and alpha/beta phase locking were found. The three temporally segregated oscillatory events correlated with each other and with SA effect, which may be the underlying neural implementation of SA. In chapter 4, a TMS-MEG study was presented investigating the role of the cerebellum in adapting to delayed presentation of self-generated tones (study 5). It demonstrated that in sham stimulation condition, the brain can adapt to the delay (about 100 ms) within 300 trials of learning by showing a significant increase of SA effect in the suppression of M100, but not M200 component. Whereas after stimulating the cerebellum with a suppressive TMS protocol, the adaptation in M100 suppression disappeared and the pattern of M200 suppression reversed to M200 enhancement. These data support the idea that the suppressive effect of actions on auditory processing is a consequence of both motor driven sensory predictions and general sensory gating. The results also demonstrate the importance of neural oscillations in implementing SA effect and the critical role of the cerebellum in learning sensory predictions under sensory perturbation.
Resumo:
Facial attractiveness is a particularly salient social cue that influences many important social outcomes. Using a standard key-press task to measure motivational salience of faces and an old/new memory task to measure memory for face photographs, this thesis investigated both within-woman and between-women variations in response to facial attractiveness. The results indicated that within-woman variables, such as fluctuations in hormone levels, influenced the motivational salience of facial attractiveness. However, the between-women variable, romantic relationship status, did not appear to modulate women’s responses to facial attractiveness. In addition to attractiveness, dominance also contributed to both the motivational salience and memorability of faces. This latter result demonstrates that, although attractiveness is an important factor for the motivational salience of faces, other factors might also cause faces to hold motivational salience. In Chapter 2, I investigated the possible effects of women’s salivary hormone levels (estradiol, progesterone, testosterone, and estradiol-to-progesterone ratio) on the motivational salience of facial attractiveness. Physically attractive faces generally hold greater motivational salience, replicating results from previous studies. Importantly, however, the effect of attractiveness on the motivational salience of faces was greater in test sessions where women had high testosterone levels. Additionally, the motivational salience of attractive female faces was greater in test sessions where women had high estradiol-to-progesterone ratios. While results from Chapter 2 suggested that the motivational salience of faces was generally positively correlated with their physical attractiveness, Chapter 3 explored whether physical characteristics other than attractiveness contributed to the motivational salience of faces. To address this issue, I first had the faces rated on multiple traits. Principal component analysis of third-party ratings of faces for these traits revealed two orthogonal components that were highly correlated with trustworthiness and dominance ratings respectively. Both components were positively and independently related to the motivational salience of faces. While Chapter 2 and 3 did not examine the between-woman differences in response to facial attractiveness, Chapter 4 examined whether women’s responses to facial attractiveness differed as a function of their romantic partnership status. As several researchers have proposed that partnership status influences women’s perception of attractiveness, in Chapter 4 I compared the effects of men’s attractiveness on partnered and unpartnered women’s performance on two response measures: memory for face photographs and the motivational salience of faces. Consistent with previous research, women’s memory was poorer for face photographs of more attractive men and more attractive men’s faces held greater motivational salience. However, in neither study were the effects of attractiveness modulated by women’s partnership status or partnered women’s reported commitment to or happiness with their romantic relationship. A key result from Chapter 4 was that more attractive faces were harder to remember. Building on this result, Chapter 5 investigated the different characteristics that contributed to the memorability of face photographs. While some work emphasizes relationships with typicality, familiarity, and memorability ratings, more recent work suggests that ratings of social traits, such as attractiveness, intelligence, and responsibility, predict the memorability of face photographs independently of typicality, familiarity, and memorability ratings. However, what components underlie these traits remains unknown, as well as whether these components relate to the actual memorability of face photographs. Principal component analysis of all these face ratings produced three orthogonal components that were highly correlated with trustworthiness, dominance, and memorability ratings, respectively. Importantly, each of these components also predicted the actual memorability of face photographs.