2 resultados para Récepteurs couplés aux protéines G (GPCRs)

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are seven-pass integral membrane proteins that act as transducers of extracellular signals across the lipid bilayer. Their location and involvement in basic and pathological physiological processes has secured their role as key targets for pharmaceutical intervention. GPCRs are targeted by many of the best-selling drugs on the market and there are a substantial number of GPCRs that are yet to be characterised; these could offer interest for therapeutic targeting. GPR35 is one such receptor that, as a result of gene knockout and genome wide association studies, has attracted interest through its association with cardiovascular and gastrointestinal disease. Elucidation of the basic physiological function of GPR35 has, however, been difficult due a paucity of potent and selective ligands in addition to a lack of consensus on the endogenous ligand. Herein, a focussed drug discovery effort was carried out to identify agonists of GPR35. Various in vitro cellular assays were employed in conjunction with N- or C-terminally manipulated forms of the receptor to investigate GPR35’s signalling profile and to provide an assay format suitable for the characterisation of newly identified ligands. Although GPR35 associates with both Gαi/o and Gα13 families of small heterotrimeric G proteins, the G protein-independent β-arrestin-2 recruitment format was found to be the most suited to drug screening efforts. Small molecule compound screening, carried out in conjunction with the Medical Research Council Technology, identified compound 1 as the most potent ligand of human GPR35 reported at that time. However, the lower efficacy and potency of compound 1 at the rodent species orthologues of GPR35 prevented its use in in vivo studies. A subsequent effort, carried out with Novartis, focused on mast cell stabilisers as putative agonists of GPR35, revealed lodoxamide and bufrolin as highly potent agonists that activated human and rat GPR35 with equal potency. This finding offered–for the first time–the opportunity to employ the same GPR35 ligand between species at a similar concentration, an important factor to consider when translating rodent in vivo functional studies to those in man. Additionally, using molecular modelling and site directed mutagenesis studies, these newly identified compounds were used to aid characterisation of the ligand binding pockets of human and rat GPR35 to reveal the molecular basis of species selectivity at this receptor. In summary, this research effort presents GPR35 tool compounds that can now be used to dissect the basic biology of GPR35 and investigate its contribution to disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The folding and targeting of membrane proteins poses a major challenge to the cell, as they must remain insertion competent while their highly hydrophobic transmembrane (TM) domains are transferred from the ribosome, through the aqueous cytosol and into the lipid bilayer. The biogenesis of a mature membrane protein takes place through the insertion and integration into the lipid bilayer. A number of TM proteins have been shown to gain some degree of secondary structure within the ribosome tunnel and to retain this conformation throughout maturation. Although studies into the folding and targeting of a number of membrane proteins have been carried out to date, there is little information on one of the largest class of eukaryotic membrane proteins; the G-protein-coupled receptors (GPCRs). This project studies the early folding events of the human ortholog of GPR35. To analyse the structure of the 1st TM domain, intermediates were generated and assessed by the biochemical method of pegylation (PEG-MAL). A structurally-similar microbial opsin (Bacterioopsin) was also used to investigate the differences in the early protein folding within eukaryotic and prokaryotic translation systems. Results showed that neither the 1st TM domain of GPR35 nor Bacterioopsin were capable of compacting in the ribosome tunnel before their N-terminus reached the ribosome exit point. The results for this assay remained consistent whether the proteins were translated in a eukaryotic or prokaryotic translation system. To examine the communication mechanism between the ribosome, the nascent chain and the protein targeting pathway, crosslinking experiments were carried out using the homobifunctional lysine cross-linker BS3. Specifically, the data generated here show that the nascent chain of GPR35 reaches the ribosomal protein uL23 in an extended conformation and interacts with the SRP protein as it exits the ribosome tunnel. This confirms the role of SRP in the co-translational targeting of GPR35. Using these methods insights into the early folding of GPCRs has been obtained. Further experiments using site-directed mutagenesis to reduce hydrophobicity in the 1st TM domain of GPR35, highlighted the mechanisms by which GPCRs are targeted to the endoplasmic reticulum. Confirming that hydrophobicity within the signal anchor sequence is essential of SRP-dependent targeting. Following the successful interaction of the nascent GPR35 and SRP, GPR35 is successfully targeted to ER membranes, shown here as dog pancreas microsomes (DPMs). Glycosylation of the GPR35 N-terminus was used to determine nascent chain structure as it is inserted into the ER membrane. These glycosylation experiments confirm that TM1 has obtained its compacted state whilst residing in the translocon. Finally, a site-specific cross-linking approach using the homobifunctional cysteine cross-linker, BMH, was used to study the lateral integration of GPR35 into the ER. Cross-linking of GPR35 TM1 and TM2 could be detected adjacent to a protein of ~45kDa, believed to be Sec61α. The loss of this adduct, as the nascent chain extends, showed the lateral movement of GPR35 TM1 from the translocon was dependent on the subsequent synthesis of TM2.