2 resultados para Periodicity

em Glasgow Theses Service


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work three different metallic metamaterials (MMs) structures such as asymmetric split ring resonators (A-SRRs), dipole and split H-shaped (ASHs) structures that support plasmonic resonances have been developed. The aim of the work involves the optimization of photonic sensor based on plasmonic resonances and surface enhanced infrared absorption (SEIRA) from the MM structures. The MMs structures were designed to tune their plasmonic resonance peaks in the mid-infrared region. The plasmonic resonance peaks produced are highly dependent on the structural dimension and polarisation of the electromagnetic (EM) source. The ASH structure particularly has the ability to produce the plasmonic resonance peak with dual polarisation of the EM source. The double resonance peaks produced due to the asymmetric nature of the structures were optimized by varying the fundamental parameters of the design. These peaks occur due to hybridization of the individual elements of the MMs structure. The presence of a dip known as a trapped mode in between the double plasmonic peaks helps to narrow the resonances. A periodicity greater than twice the length and diameter of the metallic structure was applied to produce narrow resonances for the designed MMs. A nanoscale gap in each structure that broadens the trapped mode to narrow the plasmonic resonances was also used. A thickness of 100 nm gold was used to experimentally produce a high quality factor of 18 in the mid-infrared region. The optimised plasmonic resonance peaks was used for detection of an analyte, 17β-estradiol. 17β-estradiol is mostly responsible for the development of human sex organs and can be found naturally in the environment through human excreta. SEIRA was the method applied to the analysis of the analyte. The work is important in the monitoring of human biology and in water treatment. Applying this method to the developed nano-engineered structures, enhancement factors of 10^5 and a sensitivity of 2791 nm/RIU was obtained. With this high sensitivity a figure of merit (FOM) of 9 was also achieved from the sensors. The experiments were verified using numerical simulations where the vibrational resonances of the C-H stretch from 17β-estradiol were modelled. Lastly, A-SRRs and ASH on waveguides were also designed and evaluated. These patterns are to be use as basis for future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How can we control the experimental conditions towards the isolation of specific structures? Why do particular architectures form? These are some challenging questions that synthetic chemists try to answer, specifically within polyoxometalate (POM) chemistry, where there is still much unknown regarding the synthesis of novel molecular structures in a controlled and predictive manner. This work covers a wide range of POM chemistry, exploring the redox self-assembly of polyoxometalate clusters, using both “one-pot”, flow and hydrothermal conditions. For this purpose, different vanadium, molybdenum and tungsten reagents, heteroatoms, inorganic salts and reducing agents have been used. The template effect of lone-pair containing pyramidal heteroatoms has been investigated. Efforts to synthesize new POM clusters displaying pyramidal heteroanions (XO32-, where X= S, Se, Te, P) are reported. The reaction of molybdenum with vanadium in the presence of XO32- heteroatoms is explored, showing how via the cation and experimental control it is possible to direct the self-assembly process and to isolate isostructural compounds. A series of four isostructural (two new, namely {Mo11V7P} and {Mo11V7Te} and two already known, namely {Mo11V7Se} and {Mo11V7S} disordered egg-shaped Polyoxometalates have been reported. The compounds were characterized by X-ray structural analysis, TGA, UV-Vis, FT-IR, Elemental and Flame Atomic Absorption Spectroscopy (FAAS) analysis and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Cyclic Voltammetry measurements have been carried out in all four compounds showing the effect of the ionic density of the heteroatom on the potential. High-Resolution ESI-MS studies have revealed that the structures retain their integrity in solution. Efforts to synthesize new mixed-metal compounds led to isolation, structural, and electronic characterization of the theoretically predicted, but experimentally elusive δ-isomer of the Keggin polyoxometalate cluster anion, {H2W4V9O33(C6H13NO3)}, by the reaction of tungstate(VI) and vanadium(V) with triethanolammonium ions (TEAH), acting as a tripodal ligand grafted to the surface of the cluster. Control experiments (in the absence of the organic compound) have proven that the tripodal ligand plays crucial role on the formation of the isomer. The six vanadium metal centres, which consist the upper part of the cluster, are bonded to the “capping” TEA tripodal ligand. This metal-ligand bonding directs and stabilises the formation of the final product. The δ-Keggin species was characterized by single-crystal X-ray diffraction, FT-IR, UV-vis, NMR and ESI-MS spectrometry. Electronic structure and structure-stability correlations were evaluated by means of DFT calculations. The compounds exhibited photochromic properties by undergoing single-crystal-to-single-crystal (SC-SC) transformations and changing colour under light. Non-conventional synthetic approaches are also used for the synthesis of the POM clusters comparing the classical “one-pot” reaction conditions and exploring the synthetic parameters of the synthesis of POM compounds. Reactions under hydrothermal and flow conditions, where single crystals that depend on the solubility of the minerals under hot water and high pressure can be synthesized, resulted in the isolation of two isostructural compounds, namely, {Mo12V3Te5}. The compound isolated from a continuous processing method, crystallizes in a hexagonal crystal system, forming a 2D porous plane net, while the compound isolated using hard experimental conditions (high temperature and pressure) crystallizes in monoclinic system, resulting in a different packing configuration. Utilizing these alternative synthetic approaches, the most kinetically and thermodynamically compounds would possibly be isolated. These compounds were characterised by single-crystal X-ray diffraction, FT-IR and UV-vis spectroscopy. Finally, the redox-controlled driven oscillatory template exchange between phosphate (P) and vanadate (V) anions enclosed in an {M18O54(XO4)2} cluster is further investigated using UV-vis spectroscopy as a function of reaction time, showed that more than six complete oscillations interconverting the capsule species present in solution from {P2M18} to {V2M18} were possible, provided that a sufficient concentration of the TEA reducing agent was present in solution. In an effort to investigate the periodicity of the exchange of the phosphate and vanadate anions, time dependent Uv-vis measurements were performed for a period at a range of 170-550 hours. Different experimental conditions were also applied in order to investigate the role of the reducing agent, as well as the effect of other experimental variables on the oscillatory system.