4 resultados para Performance--Ability testing.
em Glasgow Theses Service
Resumo:
The design demands on water and sanitation engineers are rapidly changing. The global population is set to rise from 7 billion to 10 billion by 2083. Urbanisation in developing regions is increasing at such a rate that a predicted 56% of the global population will live in an urban setting by 2025. Compounding these problems, the global water and energy crises are impacting the Global North and South alike. High-rate anaerobic digestion offers a low-cost, low-energy treatment alternative to the energy intensive aerobic technologies used today. Widespread implementation however is hindered by the lack of capacity to engineer high-rate anaerobic digestion for the treatment of complex wastes such as sewage. This thesis utilises the Expanded Granular Sludge Bed bioreactor (EGSB) as a model system in which to study the ecology, physiology and performance of high-rate anaerobic digestion of complex wastes. The impacts of a range of engineered parameters including reactor geometry, wastewater type, operating temperature and organic loading rate are systematically investigated using lab-scale EGSB bioreactors. Next generation sequencing of 16S amplicons is utilised as a means of monitoring microbial ecology. Microbial community physiology is monitored by means of specific methanogenic activity testing and a range of physical and chemical methods are applied to assess reactor performance. Finally, the limit state approach is trialled as a method for testing the EGSB and is proposed as a standard method for biotechnology testing enabling improved process control at full-scale. The arising data is assessed both qualitatively and quantitatively. Lab-scale reactor design is demonstrated to significantly influence the spatial distribution of the underlying ecology and community physiology in lab-scale reactors, a vital finding for both researchers and full-scale plant operators responsible for monitoring EGSB reactors. Recurrent trends in the data indicate that hydrogenotrophic methanogenesis dominates in high-rate anaerobic digestion at both full- and lab-scale when subject to engineered or operational stresses including low-temperature and variable feeding regimes. This is of relevance for those seeking to define new directions in fundamental understanding of syntrophic and competitive relations in methanogenic communities and also to design engineers in determining operating parameters for full-scale digesters. The adoption of the limit state approach enabled identification of biological indicators providing early warning of failure under high-solids loading, a vital insight for those currently working empirically towards the development of new biotechnologies at lab-scale.
Resumo:
Pancreaticoduodenectomy with or without adjuvant chemotherapy remains the only modality of possible cure in patients with cancer involving the head of the pancreas and the periampullary region. While mortality rates after pancreaticoduodenectomy have improved considerably over the course of the last century, morbidity remains high. Patient selection is of paramount importance in ensuring that major surgery is offered to individuals who will most benefit from a pancreaticoduodenectomy. Moreover, identifying preoperative risk factors provides potential targets for prehabilitation and optimisation of the patient's physiology before undertaking surgery. In addition to this, early identification of patients who are likely to develop postoperative complications allows for better allocation of critical care resources and more aggressive management high risk patients. Cardiopulmonary exercise testing is becoming an increasingly popular tool in the preoperative risk assessment of the surgical patient. However, very little work has been done to investigate the role of cardiopulmonary exercise testing in predicting complications after pancreaticoduodenectomy. The impact of jaundice, systemic inflammation and other preoperative clinicopathological characteristics on cardiopulmonary exercise physiology has not been studied in detail before in this cohort of patients. The overall aim of the thesis was to examine the relationships between preoperative clinico-pathological characteristics including cardiopulmonary exercise physiology, obstructive jaundice, body composition and systemic inflammation and complications and the post-surgical systemic inflammatory response in patients undergoing pancreaticoduodenectomy. Chapter 1 reviews the existing literature on preoperative cardiopulmonary exercise testing, the impact of obstructive jaundice, perioperative systemic inflammation and the importance of body composition in determining outcomes in patients undergoing major surgery with particular reference to pancreatic surgery. Chapter 2 reports on the role of cardiopulmonary exercise testing in predicting postoperative complications after pancreaticoduodenectomy. The results demonstrate that patients with V˙O2AT less than 10 ml/kg/min are more likely to develop a postoperative pancreatic fistula, stay longer in hospital and less likely to receive adjuvant therapy. These results emphasise the importance of aerobic fitness to recover from the operative stress of major surgery without significant morbidity. Cardiopulmonary exercise testing may prove useful in selecting patients for intensive prehabilitation programmes as well as for other optimisation measures to prepare them for major surgery. Chapter 3 evaluates the relationship between cardiopulmonary exercise physiology and other clinicopathological characteristics of the patient. A detailed analysis of cardiopulmonary exercise test parameters in jaundiced versus non-jaundiced patients demonstrates that obstructive jaundice does not impair cardiopulmonary exercise physiology. This further supports emerging evidence in contemporary literature that jaundiced patients can proceed directly to surgery without preoperative biliary drainage. The results of this study also show an interesting inverse relationship between body mass index and anaerobic threshold which is analysed in more detail in Chapter 4. Chapter 4 examines the relationship between preoperative cardiopulmonary exercise physiology and body composition in depth. All parameters measured at cardiopulmonary exercise test are compared against body composition and body mass index. The results of this chapter report that the current method of reporting V˙O2, both at peak exercise and anaerobic threshold, is biased against obese subjects and advises caution in the interpretation of cardiopulmonary exercise test results in patients with a high BMI. This is particularly important as current evidence in literature suggests that postoperative outcomes in obese subjects are comparable to non-obese subjects while cardiopulmonary exercise test results are also abnormally low in this very same cohort of patients. Chapter 5 analyses the relationship between preoperative clinico-pathological characteristics including systemic inflammation and the magnitude of the postoperative systemic inflammatory response. Obstructive jaundice appears to have an immunosuppressive effect while elevated preoperative CRP and hypoalbuminemia appear to have opposite effects with hypoalbuminemia resulting in a lower response while elevated CRP in the absence of hypoalbuminemia resulted in a greater postoperative systemic inflammatory response. Chapter 6 evaluates the role of the early postoperative systemic inflammatory response in predicting complications after pancreaticoduodenectomy and aims to establish clinically relevant thresholds for C-Reactive Protein for the prediction of complications. The results of this chapter demonstrate that CRP levels as early as the second postoperative day are associated with complications. While post-operative CRP was useful in the prediction of infective complications, this was the case only in patients who did not develop a post-operative pancreatic fistula. The predictive ability of inflammatory markers for infectious complications was blunted in patients with a pancreatic fistula. Chapter 7 summarises the findings of this thesis, their place in current literature and future directions. The results of this thesis add to the current knowledge regarding the complex pathophysiological abnormalities in patients undergoing pancreaticoduodenectomy, with specific emphasis on the interaction between cardiopulmonary exercise physiology, obstructive jaundice, systemic inflammation and postoperative outcomes. The work presented in this thesis lays the foundations for further studies aimed at improving outcomes after pancreaticoduodenectomy through the development of individualised, goal-directed therapies that are initiated well before this morbid yet necessary operation is performed.
Resumo:
The production and perception of music is a multimodal activity involving auditory, visual and conceptual processing, integrating these with prior knowledge and environmental experience. Musicians utilise expressive physical nuances to highlight salient features of the score. The question arises within the literature as to whether performers’ non-technical, non-sound-producing movements may be communicatively meaningful and convey important structural information to audience members and co-performers. In the light of previous performance research (Vines et al., 2006, Wanderley, 2002, Davidson, 1993), and considering findings within co-speech gestural research and auditory and audio-visual neuroscience, this thesis examines the nature of those movements not directly necessary for the production of sound, and their particular influence on audience perception. Within the current research 3D performance analysis is conducted using the Vicon 12- camera system and Nexus data-processing software. Performance gestures are identified as repeated patterns of motion relating to music structure, which not only express phrasing and structural hierarchy but are consistently and accurately interpreted as such by a perceiving audience. Gestural characteristics are analysed across performers and performance style using two Chopin preludes selected for their diverse yet comparable structures (Opus 28:7 and 6). Effects on perceptual judgements of presentation modes (visual-only, auditory-only, audiovisual, full- and point-light) and viewing conditions are explored. This thesis argues that while performance style is highly idiosyncratic, piano performers reliably generate structural gestures through repeated patterns of upper-body movement. The shapes and locations of phrasing motions are identified particular to the sample of performers investigated. Findings demonstrate that despite the personalised nature of the gestures, performers use increased velocity of movements to emphasise musical structure and that observers accurately and consistently locate phrasing junctures where these patterns and variation in motion magnitude, shape and velocity occur. By viewing performance motions in polar (spherical) rather than cartesian coordinate space it is possible to get mathematically closer to the movement generated by each of the nine performers, revealing distinct patterns of motion relating to phrasing structures, regardless of intended performance style. These patterns are highly individualised both to each performer and performed piece. Instantaneous velocity analysis indicates a right-directed bias of performance motion variation at salient structural features within individual performances. Perceptual analyses demonstrate that audience members are able to accurately and effectively detect phrasing structure from performance motion alone. This ability persists even for degraded point-light performances, where all extraneous environmental information has been removed. The relative contributions of audio, visual and audiovisual judgements demonstrate that the visual component of a performance does positively impact on the over- all accuracy of phrasing judgements, indicating that receivers are most effective in their recognition of structural segmentations when they can both see and hear a performance. Observers appear to make use of a rapid online judgement heuristics, adjusting response processes quickly to adapt and perform accurately across multiple modes of presentation and performance style. In line with existent theories within the literature, it is proposed that this processing ability may be related to cognitive and perceptual interpretation of syntax within gestural communication during social interaction and speech. Findings of this research may have future impact on performance pedagogy, computational analysis and performance research, as well as potentially influencing future investigations of the cognitive aspects of musical and gestural understanding.
Resumo:
Vertebrate genomes are organised into a variety of nuclear environments and chromatin states that have profound effects on the regulation of gene transcription. This variation presents a major challenge to the expression of transgenes for experimental research, genetic therapies and the production of biopharmaceuticals. The majority of transgenes succumb to transcriptional silencing by their chromosomal environment when they are randomly integrated into the genome, a phenomenon known as chromosomal position effect (CPE). It is not always feasible to target transgene integration to transcriptionally permissive “safe harbour” loci that favour transgene expression, so there remains an unmet need to identify gene regulatory elements that can be added to transgenes which protect them against CPE. Dominant regulatory elements (DREs) with chromatin barrier (or boundary) activity have been shown to protect transgenes from CPE. The HS4 element from the chicken beta-globin locus and the A2UCOE element from a human housekeeping gene locus have been shown to function as DRE barriers in a wide variety of cell types and species. Despite rapid advances in the profiling of transcription factor binding, chromatin states and chromosomal looping interactions, progress towards functionally validating the many candidate barrier elements in vertebrates has been very slow. This is largely due to the lack of a tractable and efficient assay for chromatin barrier activity. In this study, I have developed the RGBarrier assay system to test the chromatin barrier activity of candidate DREs at pre-defined isogenic loci in human cells. The RGBarrier assay consists in a Flp-based RMCE reaction for the integration of an expression construct, carrying candidate DREs, in a pre-characterised chromosomal location. The RGBarrier system involves the tracking of red, green and blue fluorescent proteins by flow cytometry to monitor on-target versus off-target integration and transgene expression. The analysis of the reporter (GFP) expression for several weeks gives a measure of the protective ability of each candidate elements from chromosomal silencing. This assay can be scaled up to test tens of new putative barrier elements in the same chromosomal context in parallel. The defined chromosomal contexts of the RGBarrier assays will allow for detailed mechanistic studies of chromosomal silencing and DRE barrier element action. Understanding these mechanisms will be of paramount importance for the design of specific solutions for overcoming chromosomal silencing in specific transgenic applications.