2 resultados para Pathogenic bacteria.
em Glasgow Theses Service
Resumo:
Staphylococcal pathogenicity islands (SaPIs), the prototype members of the family of phage inducible chromosomal islands (PICIs), are extremely mobile phage satellites, which are transferred between bacterial hosts after their induction by a helper phage. The intimate relationship between SaPIs and their helper phages is one of the most studied examples of virus satellite interactions in prokaryotic cells. SaPIs encode and disseminate virulence and fitness factors, representing a driving force for bacterial adaptation and pathogenesis. Many SaPIs encode a conserved morphogenetic operon, including a core set of genes whose function allows them to parasitize and exploit the phage life cycle. One of the central mechanisms of this molecular piracy is the specific packaging of the SaPI genomes into reduced sized capsid structures derived from phage proteins. Pac phages were classically thought to be the only phages involved in the mobilisation of phage-mediated virulence genes, including the transfer of SaPIs within related and non-related bacteria. This study presents the involvement of S. aureus cos phages in the intra- and intergeneric transfer of cos SaPIs for the first time. A novel example of molecular parasitism is shown, by which this newly characterised group of cos SaPIs uses two distinct and complementary mechanisms to take over the helper phage packaging machinery for their own reproduction. SaPIbov5, the prototype of the cos SaPIs, does not encode the characteristic morphogenetic operon found in pac SaPIs. However, cos SaPIs features both pac and cos phage cleavage sequences in their genome, ensuring SaPI packaging in small- and full-sized phage particles, depending on the helper phage. Moreover, cos-site packaging in S. aureus was shown to require the activity of a phage HNH nuclease. The HNH protein functions together with the large terminase subunit, triggering cleavage and melting of the cos-site sequence. In addition, a novel piracy strategy, severely interfering with the helper phage reproduction, was identified in cos SaPIs and characterised. This mechanism of piracy depends on the cos SaPI-encoded ccm gene, which encodes a capsid protein involved in the formation of small phage particles, modifying the assembling process via a scaffolding mechanism. This strategy resembles the ones described for pac SaPIs and represents a remarkable example of convergent evolution. A further convergent mechanism of capsid size-reduction was identified and characterised for the Enterococcus faecalis EfCIV583 pathogenicity island, another member of the PICI family. In this case, the self-encoded CpmE conducts this molecular piracy through a putative scaffolding function. Similar to cos SaPIs, EfCIV583 carries the helper phage cleavage sequence in its genome enabling its mobilisation by the phage terminase complex. The results presented in this thesis show how two examples of non-related members of the PICI family follow the same evolutionary convergent strategy to interfere with their helper phage. These findings could indicate that the described strategies might be widespread among PICIs and implicate a significant impact of PICIs mediated-virulence gene transfer in bacterial evolution and the emergence of pathogenic bacteria.
New prophylactic and therapeutic treatments to combat pathogenic Enterohaemorrhagic Escherichia coli
Resumo:
Bacterial diarrhoeal diseases have significant influence on global human health, and are a leading cause of preventable death in the developing world. Enterohaemorrhagic Escherichia coli (EHEC), pathogenic strains of E. coli that carry potent toxins, have been associated with a high number of large-scale outbreaks caused by contaminated food and water sources. This pathotype produces diarrhoea and haemorrhagic colitis in infected humans, and in some patients leads to the development of haemolytic uremic syndrome (HUS), which can result in mortality and chronic kidney disease. A major obstacle to the treatment of EHEC infections is the increased risk of HUS development that is associated with antibiotic treatment, and rehydration and renal support are often the only options available. New treatments designed to prevent or clear E. coli infections and reduce symptoms of illness would therefore have large public health and economic impacts. The three main aims of this thesis were: to explore mouse models for pre-clinical evaluation in vivo of small compounds that inhibit a major EHEC colonisation factor, to assess the production and role of two proteins considered promising candidates for a broad-spectrum vaccine against pathogenic E. coli, and to investigate a novel compound that has recently been identified as a potential inhibitor of EHEC toxin production. As EHEC cannot be safely tested in humans due to the risk of HUS development, appropriate small animal models are required for in vivo testing of new drugs. A number of different mouse models have been developed to replicate different features of EHEC pathogenesis, several of which we investigated with a focus on colonisation mediated by the Type III Secretion System (T3SS), a needle-like structure that translocates bacterial proteins into host cells, resulting in a tight, intimate attachment between pathogen and host, aiding colonisation of the gastrointestinal tract. As E. coli models were found not to depend significantly on the T3SS for colonisation, the Citrobacter rodentium model, a natural mouse pathogen closely related to E. coli, was deemed the most suitable mouse model currently available for in vivo testing of T3SS-targeting compounds. Two bacterial proteins, EaeH (an outer membrane adhesin) and YghJ (a putative secreted lipoprotein), highly conserved surface-associated proteins recently identified as III protective antigens against E. coli infection of mice, were explored in order to determine their suitability as candidates for a human vaccine against pathogenic E. coli. We focused on the expression and function of these proteins in the EHEC O157:H7 EDL933 strain and the adherent-invasive E. coli (AIEC) LF82 strain. Although expression of EaeH by other E. coli pathotypes has recently been shown to be upregulated upon contact with host intestinal cells, no evidence of this upregulation could be demonstrated in our strains. Additionally, while YghJ was produced by the AIEC strain, it was not secreted by bacteria under conditions that other YghJ-expressing E. coli pathotypes do, despite the AIEC strain carrying all the genes required to encode the secretion system it is associated with. While our findings indicate that a vaccine that raises antibodies against EaeH and YghJ may have limited effect on the EHEC and AIEC strains we used, recent studies into these proteins in different E. coli pathogens have suggested they are still excellent candidates for a broadly effective vaccine against E. coli. Finally, we characterised a small lead compound, identified by high-throughput screening as a possible inhibitor of Shiga toxin expression. Shiga toxin production causes both the symptoms of illness and development of HUS, and thus reduction of toxin production, release, or binding to host receptors could therefore be an effective way to treat infections and decrease the risk of HUS. Inhibition of Shiga toxin production by this compound was confirmed, and was shown to be caused by an inhibitory effect on activation of the bacterial SOS response rather than on the Shiga toxin genes themselves. The bacterial target of this compound was identified as RecA, a major regulator of the SOS response, and we hypothesise that the compound binds covalently to its target, preventing oligomerisation of RecA into an activated filament. Altogether, the results presented here provide an improved understanding of these different approaches to combating EHEC infection, which will aid the development of safe and effective vaccines and anti-virulence treatments against EHEC.