2 resultados para PMS-phage assay
em Glasgow Theses Service
Resumo:
Vertebrate genomes are organised into a variety of nuclear environments and chromatin states that have profound effects on the regulation of gene transcription. This variation presents a major challenge to the expression of transgenes for experimental research, genetic therapies and the production of biopharmaceuticals. The majority of transgenes succumb to transcriptional silencing by their chromosomal environment when they are randomly integrated into the genome, a phenomenon known as chromosomal position effect (CPE). It is not always feasible to target transgene integration to transcriptionally permissive “safe harbour” loci that favour transgene expression, so there remains an unmet need to identify gene regulatory elements that can be added to transgenes which protect them against CPE. Dominant regulatory elements (DREs) with chromatin barrier (or boundary) activity have been shown to protect transgenes from CPE. The HS4 element from the chicken beta-globin locus and the A2UCOE element from a human housekeeping gene locus have been shown to function as DRE barriers in a wide variety of cell types and species. Despite rapid advances in the profiling of transcription factor binding, chromatin states and chromosomal looping interactions, progress towards functionally validating the many candidate barrier elements in vertebrates has been very slow. This is largely due to the lack of a tractable and efficient assay for chromatin barrier activity. In this study, I have developed the RGBarrier assay system to test the chromatin barrier activity of candidate DREs at pre-defined isogenic loci in human cells. The RGBarrier assay consists in a Flp-based RMCE reaction for the integration of an expression construct, carrying candidate DREs, in a pre-characterised chromosomal location. The RGBarrier system involves the tracking of red, green and blue fluorescent proteins by flow cytometry to monitor on-target versus off-target integration and transgene expression. The analysis of the reporter (GFP) expression for several weeks gives a measure of the protective ability of each candidate elements from chromosomal silencing. This assay can be scaled up to test tens of new putative barrier elements in the same chromosomal context in parallel. The defined chromosomal contexts of the RGBarrier assays will allow for detailed mechanistic studies of chromosomal silencing and DRE barrier element action. Understanding these mechanisms will be of paramount importance for the design of specific solutions for overcoming chromosomal silencing in specific transgenic applications.
Resumo:
Staphylococcal pathogenicity islands (SaPIs), the prototype members of the family of phage inducible chromosomal islands (PICIs), are extremely mobile phage satellites, which are transferred between bacterial hosts after their induction by a helper phage. The intimate relationship between SaPIs and their helper phages is one of the most studied examples of virus satellite interactions in prokaryotic cells. SaPIs encode and disseminate virulence and fitness factors, representing a driving force for bacterial adaptation and pathogenesis. Many SaPIs encode a conserved morphogenetic operon, including a core set of genes whose function allows them to parasitize and exploit the phage life cycle. One of the central mechanisms of this molecular piracy is the specific packaging of the SaPI genomes into reduced sized capsid structures derived from phage proteins. Pac phages were classically thought to be the only phages involved in the mobilisation of phage-mediated virulence genes, including the transfer of SaPIs within related and non-related bacteria. This study presents the involvement of S. aureus cos phages in the intra- and intergeneric transfer of cos SaPIs for the first time. A novel example of molecular parasitism is shown, by which this newly characterised group of cos SaPIs uses two distinct and complementary mechanisms to take over the helper phage packaging machinery for their own reproduction. SaPIbov5, the prototype of the cos SaPIs, does not encode the characteristic morphogenetic operon found in pac SaPIs. However, cos SaPIs features both pac and cos phage cleavage sequences in their genome, ensuring SaPI packaging in small- and full-sized phage particles, depending on the helper phage. Moreover, cos-site packaging in S. aureus was shown to require the activity of a phage HNH nuclease. The HNH protein functions together with the large terminase subunit, triggering cleavage and melting of the cos-site sequence. In addition, a novel piracy strategy, severely interfering with the helper phage reproduction, was identified in cos SaPIs and characterised. This mechanism of piracy depends on the cos SaPI-encoded ccm gene, which encodes a capsid protein involved in the formation of small phage particles, modifying the assembling process via a scaffolding mechanism. This strategy resembles the ones described for pac SaPIs and represents a remarkable example of convergent evolution. A further convergent mechanism of capsid size-reduction was identified and characterised for the Enterococcus faecalis EfCIV583 pathogenicity island, another member of the PICI family. In this case, the self-encoded CpmE conducts this molecular piracy through a putative scaffolding function. Similar to cos SaPIs, EfCIV583 carries the helper phage cleavage sequence in its genome enabling its mobilisation by the phage terminase complex. The results presented in this thesis show how two examples of non-related members of the PICI family follow the same evolutionary convergent strategy to interfere with their helper phage. These findings could indicate that the described strategies might be widespread among PICIs and implicate a significant impact of PICIs mediated-virulence gene transfer in bacterial evolution and the emergence of pathogenic bacteria.