3 resultados para Operational Data Stores

em Glasgow Theses Service


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, we present a quantitative approach using probabilistic verification techniques for the analysis of reliability, availability, maintainability, and safety (RAMS) properties of satellite systems. The subject of our research is satellites used in mission critical industrial applications. A strong case for using probabilistic model checking to support RAMS analysis of satellite systems is made by our verification results. This study is intended to build a foundation to help reliability engineers with a basic background in model checking to apply probabilistic model checking to small satellite systems. We make two major contributions. One of these is the approach of RAMS analysis to satellite systems. In the past, RAMS analysis has been extensively applied to the field of electrical and electronics engineering. It allows system designers and reliability engineers to predict the likelihood of failures from the indication of historical or current operational data. There is a high potential for the application of RAMS analysis in the field of space science and engineering. However, there is a lack of standardisation and suitable procedures for the correct study of RAMS characteristics for satellite systems. This thesis considers the promising application of RAMS analysis to the case of satellite design, use, and maintenance, focusing on its system segments. Data collection and verification procedures are discussed, and a number of considerations are also presented on how to predict the probability of failure. Our second contribution is leveraging the power of probabilistic model checking to analyse satellite systems. We present techniques for analysing satellite systems that differ from the more common quantitative approaches based on traditional simulation and testing. These techniques have not been applied in this context before. We present the use of probabilistic techniques via a suite of detailed examples, together with their analysis. Our presentation is done in an incremental manner: in terms of complexity of application domains and system models, and a detailed PRISM model of each scenario. We also provide results from practical work together with a discussion about future improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The value of integrating a heat storage into a geothermal district heating system has been investigated. The behaviour of the system under a novel operational strategy has been simulated focusing on the energetic, economic and environmental effects of the new strategy of incorporation of the heat storage within the system. A typical geothermal district heating system consists of several production wells, a system of pipelines for the transportation of the hot water to end-users, one or more re-injection wells and peak-up devices (usually fossil-fuel boilers). Traditionally in these systems, the production wells change their production rate throughout the day according to heat demand, and if their maximum capacity is exceeded the peak-up devices are used to meet the balance of the heat demand. In this study, it is proposed to maintain a constant geothermal production and add heat storage into the network. Subsequently, hot water will be stored when heat demand is lower than the production and the stored hot water will be released into the system to cover the peak demands (or part of these). It is not intended to totally phase-out the peak-up devices, but to decrease their use, as these will often be installed anyway for back-up purposes. Both the integration of a heat storage in such a system as well as the novel operational strategy are the main novelties of this thesis. A robust algorithm for the sizing of these systems has been developed. The main inputs are the geothermal production data, the heat demand data throughout one year or more and the topology of the installation. The outputs are the sizing of the whole system, including the necessary number of production wells, the size of the heat storage and the dimensions of the pipelines amongst others. The results provide several useful insights into the initial design considerations for these systems, emphasizing particularly the importance of heat losses. Simulations are carried out for three different cases of sizing of the installation (small, medium and large) to examine the influence of system scale. In the second phase of work, two algorithms are developed which study in detail the operation of the installation throughout a random day and a whole year, respectively. The first algorithm can be a potentially powerful tool for the operators of the installation, who can know a priori how to operate the installation on a random day given the heat demand. The second algorithm is used to obtain the amount of electricity used by the pumps as well as the amount of fuel used by the peak-up boilers over a whole year. These comprise the main operational costs of the installation and are among the main inputs of the third part of the study. In the third part of the study, an integrated energetic, economic and environmental analysis of the studied installation is carried out together with a comparison with the traditional case. The results show that by implementing heat storage under the novel operational strategy, heat is generated more cheaply as all the financial indices improve, more geothermal energy is utilised and less fuel is used in the peak-up boilers, with subsequent environmental benefits, when compared to the traditional case. Furthermore, it is shown that the most attractive case of sizing is the large one, although the addition of the heat storage most greatly impacts the medium case of sizing. In other words, the geothermal component of the installation should be sized as large as possible. This analysis indicates that the proposed solution is beneficial from energetic, economic, and environmental perspectives. Therefore, it can be stated that the aim of this study is achieved in its full potential. Furthermore, the new models for the sizing, operation and economic/energetic/environmental analyses of these kind of systems can be used with few adaptations for real cases, making the practical applicability of this study evident. Having this study as a starting point, further work could include the integration of these systems with end-user demands, further analysis of component parts of the installation (such as the heat exchangers) and the integration of a heat pump to maximise utilisation of geothermal energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ongoing depletion of fossil fuels and the severe consequences of the greenhouse effect make the development of alternative energy systems crucially important. While hydrogen is, in principle, a promising alternative, releasing nothing but energy and pure water. Hydrogen storage is complicated and no completely viable technique has been proposed so far. This work is concerned with the study of one potential alternative to pure hydrogen: ammonia, and more specifically its storage in solids. Ammonia, NH3, can be regarded as a chemical hydrogen carrier with the advantages of strongly reduced flammability and explosiveness as compared to hydrogen. Furthermore, ammine metal salts presented here as promising ammonia stores easily store up to 50 wt.-% ammonia, giving them a volumetric energy density comparable to natural gas. The model system NiX2–NH3 ( X = Cl, Br, I) is studied thoroughly with respect to ammine salt formation, thermal decomposition, air stability and structural effects. The system CuX2–NH3 ( X = Cl, Br) has an adverse thermal decomposition behaviour, making it impractical for use as an ammonia store. This system is, however, most interesting from a structural point of view and some work concerning the study of the structural behaviour of this system is presented. Finally, close chemical relatives to the metal ammine halides, the metal ammine nitrates are studied. They exhibit interesting anion arrangements, which is an impressive showcase for the combination of diffraction and spectroscopic information. The characterisation techniques in this thesis range from powder diffraction over single crystal diffraction, spectroscopy, computational modelling, thermal analyses to gravimetric uptake experiments. Further highlights are the structure solutions and refinements from powder data of (NH4)2[NiCl4(H2O)(NH3)] and Ni(NH3)2(NO3)2, the combination of crystallographic and chemical information for the elucidation of the (NH4)2[NiCl4(H2O)(NH3)] formation reaction and the growth of single crystals under ammonia flow, a technique allowing the first documented successful growth and single crystal diffraction measurement for [Cu(NH3)6]Cl2.