2 resultados para Mobile telecommunication systems

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Users need to be able to address in-air gesture systems, which means finding where to perform gestures and how to direct them towards the intended system. This is necessary for input to be sensed correctly and without unintentionally affecting other systems. This thesis investigates novel interaction techniques which allow users to address gesture systems properly, helping them find where and how to gesture. It also investigates audio, tactile and interactive light displays for multimodal gesture feedback; these can be used by gesture systems with limited output capabilities (like mobile phones and small household controls), allowing the interaction techniques to be used by a variety of device types. It investigates tactile and interactive light displays in greater detail, as these are not as well understood as audio displays. Experiments 1 and 2 explored tactile feedback for gesture systems, comparing an ultrasound haptic display to wearable tactile displays at different body locations and investigating feedback designs. These experiments found that tactile feedback improves the user experience of gesturing by reassuring users that their movements are being sensed. Experiment 3 investigated interactive light displays for gesture systems, finding this novel display type effective for giving feedback and presenting information. It also found that interactive light feedback is enhanced by audio and tactile feedback. These feedback modalities were then used alongside audio feedback in two interaction techniques for addressing gesture systems: sensor strength feedback and rhythmic gestures. Sensor strength feedback is multimodal feedback that tells users how well they can be sensed, encouraging them to find where to gesture through active exploration. Experiment 4 found that they can do this with 51mm accuracy, with combinations of audio and interactive light feedback leading to the best performance. Rhythmic gestures are continuously repeated gesture movements which can be used to direct input. Experiment 5 investigated the usability of this technique, finding that users can match rhythmic gestures well and with ease. Finally, these interaction techniques were combined, resulting in a new single interaction for addressing gesture systems. Using this interaction, users could direct their input with rhythmic gestures while using the sensor strength feedback to find a good location for addressing the system. Experiment 6 studied the effectiveness and usability of this technique, as well as the design space for combining the two types of feedback. It found that this interaction was successful, with users matching 99.9% of rhythmic gestures, with 80mm accuracy from target points. The findings show that gesture systems could successfully use this interaction technique to allow users to address them. Novel design recommendations for using rhythmic gestures and sensor strength feedback were created, informed by the experiment findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen is considered as an appealing alternative to fossil fuels in the pursuit of sustainable, secure and prosperous growth in the UK and abroad. However there exists a persisting bottleneck in the effective storage of hydrogen for mobile applications in order to facilitate a wide implementation of hydrogen fuel cells in the fossil fuel dependent transportation industry. To address this issue, new means of solid state chemical hydrogen storage are proposed in this thesis. This involves the coupling of LiH with three different organic amines: melamine, urea and dicyandiamide. In principle, thermodynamically favourable hydrogen release from these systems proceeds via the deprotonation of the protic N-H moieties by the hydridic metal hydride. Simultaneously hydrogen kinetics is expected to be enhanced over heavier hydrides by incorporating lithium ions in the proposed binary hydrogen storage systems. Whilst the concept has been successfully demonstrated by the results obtained in this work, it was observed that optimising the ball milling conditions is central in promoting hydrogen desorption in the proposed systems. The theoretical amount of 6.97 wt% by dry mass of hydrogen was released when heating a ball milled mixture of LiH and melamine (6:1 stoichiometry) to 320 °C. It was observed that ball milling introduces a disruption in the intermolecular hydrogen bonding network that exists in pristine melamine. This effect extends to a molecular level electron redistribution observed as a function of shifting IR bands. It was postulated that stable phases form during the first stages of dehydrogenation which contain the triazine skeleton. Dehydrogenation of this system yields a solid product Li2NCN, which has been rehydrogenated back to melamine via hydrolysis under weak acidic conditions. On the other hand, the LiH and urea system (4:1 stoichiometry) desorbed approximately 5.8 wt% of hydrogen, from the theoretical capacity of 8.78 wt% (dry mass), by 270 °C accompanied by undesirable ammonia and trace amount of water release. The thermal dehydrogenation proceeds via the formation of Li(HN(CO)NH2) at 104.5 °C; which then decomposes to LiOCN and unidentified phases containing C-N moieties by 230 °C. The final products are Li2NCN and Li2O (270 °C) with LiCN and Li2CO3 also detected under certain conditions. It was observed that ball milling can effectively supress ammonia formation. Furthermore results obtained from energetic ball milling experiments have indicated that the barrier to full dehydrogenation between LiH and urea is principally kinetic. Finally the dehydrogenation reaction between LiH and dicyandiamide system (4:1 stoichiometry) occurs through two distinct pathways dependent on the ball milling conditions. When ball milled at 450 RPM for 1 h, dehydrogenation proceeds alongside dicyandiamide condensation by 400 °C whilst at a slower milling speed of 400 RPM for 6h, decomposition occurs via a rapid gas desorption (H2 and NH3) at 85 °C accompanied by sample foaming. The reactant dicyandiamide can be generated by hydrolysis using the product Li2NCN.