3 resultados para Mixed network former effect

em Glasgow Theses Service


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hematopoiesis is the tightly controlled and complex process in which the entire blood system is formed and maintained by a rare pool of hematopoietic stem cells (HSCs), and its dysregulation results in the formation of leukaemia. TRIB2, a member of the Tribbles family of serine/threonine pseudokinases, has been implicated in a variety of cancers and is a potent murine oncogene that induces acute myeloid leukaemia (AML) in vivo via modulation of the essential myeloid transcription factor CCAAT-enhancer binding protein α (C/EBPα). C/EBPα, which is crucial for myeloid cell differentiation, is commonly dysregulated in a variety of cancers, including AML. Two isoforms of C/EBPα exist - the full-length p42 isoform, and the truncated oncogenic p30 isoform. TRIB2 has been shown to selectively degrade the p42 isoform of C/EBPα and induce p30 expression in AML. In this study, overexpression of the p30 isoform in a bone marrow transplant (BMT) leads to perturbation of myelopoiesis, and in the presence of physiological levels of p42, this oncogene exhibited weak transformative ability. It was also shown by BMT that despite their degradative relationship, expression of C/EBPα was essential for TRIB2 mediated leukaemia. A conditional mouse model was used to demonstrate that oncogenic p30 cooperates with TRIB2 to reduce disease latency, only in the presence of p42. At the molecular level, a ubiquitination assay was used to show that TRIB2 degrades p42 by K48-mediated proteasomal ubiquitination and was unable to ubiquitinate p30. Mutation of a critical lysine residue in the C-terminus of C/EBPα abrogated TRIB2 mediated C/EBPα ubiquitination suggesting that this site, which is frequently mutated in AML, is the site at which TRIB2 mediates its degradative effects. The TRIB2-C/EBPα axis was effectively targeted by proteasome inhibition. AML is a very difficult disease to target therapeutically due to the extensive array of chromosomal translocations and genetic aberrations that contribute to the disease. The cell from which a specific leukaemia arises, or leukaemia initiating cell (LIC), can affect the phenotype and chemotherapeutic response of the resultant disease. The LIC has been elucidated for some common oncogenes but it is unknown for TRIB2. The data presented in this thesis investigate the ability of the oncogene TRIB2 to transform hematopoietic stem and progenitor cells in vitro and in vivo. TRIB2 overexpression conferred in vitro serially replating ability to all stem and progenitor cells studied. Upon transplantation, only TRIB2 overexpressing HSCs and granulocyte/macrophage progenitors (GMPs) resulted in the generation of leukaemia in vivo. TRIB2 induced a mature myeloid leukaemia from the GMP, and a mixed lineage leukaemia from the HSC. As such the role of TRIB2 in steady state hematopoiesis was also explored using a Trib2-/- mouse and it was determined that loss of Trib2 had no effect on lineage distribution in the hematopoietic compartment under steady-state conditions. The process of hematopoiesis is controlled by a host of lineage restricted transcription factors. Recently members of the Nuclear Factor 1 family of transcription factors (NFIA, NFIB, NFIC and NFIX) have been implicated in hematopoiesis. Little is known about the role of NFIX in lineage determination. Here we describe a novel role for NFIX in lineage fate determination. In human and murine datasets the expression of Nfix was shown to decrease as cells differentiated along the lymphoid pathway. NFIX overexpression resulted in enhanced myelopoiesis in vivo and in vitro and a block in B cell development at the pre-pro-B cell stage. Loss of NFIX resulted in disruption of myeloid and lymphoid differentiation in vivo. These effects on stem and progenitor cell fate correlated with changes in the expression levels of key transcription factors involved in hematopoietic differentiation including a 15-fold increase in Cebpa expression in Nfix overexpressing cells. The data presented support a role for NFIX as an important transcription factor influencing hematopoietic lineage specification. The identification of NFIX as a novel transcription factor influencing lineage determination will lead to further study of its role in hematopoiesis, and contribute to a better understanding of the process of differentiation. Elucidating the relationship between TRIB2 and C/EBPα not only impacts on our understanding of the pathophysiology of AML but is also relevant in other cancer types including lung and liver cancer. Thus in summary, the data presented in this thesis provide important insights into key areas which will facilitate the development of future therapeutic approaches in cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is an investigation of structural brain abnormalities, as well as multisensory and unisensory processing deficits in autistic traits and Autism Spectrum Disorder (ASD). To achieve this, structural and functional magnetic resonance imaging (fMRI) and psychophysical techniques were employed. ASD is a neurodevelopmental condition which is characterised by the social communication and interaction deficits, as well as repetitive patterns of behaviour, interests and activities. These traits are thought to be present in a typical population. The Autism Spectrum Quotient questionnaire (AQ) was developed to assess the prevalence of autistic traits in the general population. Von dem Hagen et al. (2011) revealed a link between AQ with white matter (WM) and grey matter (GM) volume (using voxel-based-morphometry). However, their findings revealed no difference in GM in areas associated with social cognition. Cortical thickness (CT) measurements are known to be a more direct measure of cortical morphology than GM volume. Therefore, Chapter 2 investigated the relationship between AQ scores and CT in the same sample of participants. This study showed that AQ scores correlated with CT in the left temporo-occipital junction, left posterior cingulate, right precentral gyrus and bilateral precentral sulcus, in a typical population. These areas were previously associated with structural and functional differences in ASD. Thus the findings suggest, to some extent, autistic traits are reflected in brain structure - in the general population. The ability to integrate auditory and visual information is crucial to everyday life, and results are mixed regarding how ASD influences audiovisual integration. To investigate this question, Chapter 3 examined the Temporal Integration Window (TIW), which indicates how precisely sight and sound need to be temporally aligned so that a unitary audiovisual event can be perceived. 26 adult males with ASD and 26 age and IQ-matched typically developed males were presented with flash-beep (BF), point-light drummer, and face-voice (FV) displays with varying degrees of asynchrony and asked to make Synchrony Judgements (SJ) and Temporal Order Judgements (TOJ). Analysis of the data included fitting Gaussian functions as well as using an Independent Channels Model (ICM) to fit the data (Garcia-Perez & Alcala-Quintana, 2012). Gaussian curve fitting for SJs showed that the ASD group had a wider TIW, but for TOJ no group effect was found. The ICM supported these results and model parameters indicated that the wider TIW for SJs in the ASD group was not due to sensory processing at the unisensory level, but rather due to decreased temporal resolution at a decisional level of combining sensory information. Furthermore, when performing TOJ, the ICM revealed a smaller Point of Subjective Simultaneity (PSS; closer to physical synchrony) in the ASD group than in the TD group. Finding that audiovisual temporal processing is different in ASD encouraged us to investigate the neural correlates of multisensory as well as unisensory processing using functional magnetic resonance imaging fMRI. Therefore, Chapter 4 investigated audiovisual, auditory and visual processing in ASD of simple BF displays and complex, social FV displays. During a block design experiment, we measured the BOLD signal when 13 adults with ASD and 13 typically developed (TD) age-sex- and IQ- matched adults were presented with audiovisual, audio and visual information of BF and FV displays. Our analyses revealed that processing of audiovisual as well as unisensory auditory and visual stimulus conditions in both the BF and FV displays was associated with reduced activation in ASD. Audiovisual, auditory and visual conditions of FV stimuli revealed reduced activation in ASD in regions of the frontal cortex, while BF stimuli revealed reduced activation the lingual gyri. The inferior parietal gyrus revealed an interaction between stimulus sensory condition of BF stimuli and group. Conjunction analyses revealed smaller regions of the superior temporal cortex (STC) in ASD to be audiovisual sensitive. Against our predictions, the STC did not reveal any activation differences, per se, between the two groups. However, a superior frontal area was shown to be sensitive to audiovisual face-voice stimuli in the TD group, but not in the ASD group. Overall this study indicated differences in brain activity for audiovisual, auditory and visual processing of social and non-social stimuli in individuals with ASD compared to TD individuals. These results contrast previous behavioural findings, suggesting different audiovisual integration, yet intact auditory and visual processing in ASD. Our behavioural findings revealed audiovisual temporal processing deficits in ASD during SJ tasks, therefore we investigated the neural correlates of SJ in ASD and TD controls. Similar to Chapter 4, we used fMRI in Chapter 5 to investigate audiovisual temporal processing in ASD in the same participants as recruited in Chapter 4. BOLD signals were measured while the ASD and TD participants were asked to make SJ on audiovisual displays of different levels of asynchrony: the participants’ PSS, audio leading visual information (audio first), visual leading audio information (visual first). Whereas no effect of group was found with BF displays, increased putamen activation was observed in ASD participants compared to TD participants when making SJs on FV displays. Investigating SJ on audiovisual displays in the bilateral superior temporal gyrus (STG), an area involved in audiovisual integration (see Chapter 4), we found no group differences or interaction between group and levels of audiovisual asynchrony. The investigation of different levels of asynchrony revealed a complex pattern of results indicating a network of areas more involved in processing PSS than audio first and visual first, as well as areas responding differently to audio first compared to video first. These activation differences between audio first and video first in different brain areas are constant with the view that audio leading and visual leading stimuli are processed differently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How can we control the experimental conditions towards the isolation of specific structures? Why do particular architectures form? These are some challenging questions that synthetic chemists try to answer, specifically within polyoxometalate (POM) chemistry, where there is still much unknown regarding the synthesis of novel molecular structures in a controlled and predictive manner. This work covers a wide range of POM chemistry, exploring the redox self-assembly of polyoxometalate clusters, using both “one-pot”, flow and hydrothermal conditions. For this purpose, different vanadium, molybdenum and tungsten reagents, heteroatoms, inorganic salts and reducing agents have been used. The template effect of lone-pair containing pyramidal heteroatoms has been investigated. Efforts to synthesize new POM clusters displaying pyramidal heteroanions (XO32-, where X= S, Se, Te, P) are reported. The reaction of molybdenum with vanadium in the presence of XO32- heteroatoms is explored, showing how via the cation and experimental control it is possible to direct the self-assembly process and to isolate isostructural compounds. A series of four isostructural (two new, namely {Mo11V7P} and {Mo11V7Te} and two already known, namely {Mo11V7Se} and {Mo11V7S} disordered egg-shaped Polyoxometalates have been reported. The compounds were characterized by X-ray structural analysis, TGA, UV-Vis, FT-IR, Elemental and Flame Atomic Absorption Spectroscopy (FAAS) analysis and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Cyclic Voltammetry measurements have been carried out in all four compounds showing the effect of the ionic density of the heteroatom on the potential. High-Resolution ESI-MS studies have revealed that the structures retain their integrity in solution. Efforts to synthesize new mixed-metal compounds led to isolation, structural, and electronic characterization of the theoretically predicted, but experimentally elusive δ-isomer of the Keggin polyoxometalate cluster anion, {H2W4V9O33(C6H13NO3)}, by the reaction of tungstate(VI) and vanadium(V) with triethanolammonium ions (TEAH), acting as a tripodal ligand grafted to the surface of the cluster. Control experiments (in the absence of the organic compound) have proven that the tripodal ligand plays crucial role on the formation of the isomer. The six vanadium metal centres, which consist the upper part of the cluster, are bonded to the “capping” TEA tripodal ligand. This metal-ligand bonding directs and stabilises the formation of the final product. The δ-Keggin species was characterized by single-crystal X-ray diffraction, FT-IR, UV-vis, NMR and ESI-MS spectrometry. Electronic structure and structure-stability correlations were evaluated by means of DFT calculations. The compounds exhibited photochromic properties by undergoing single-crystal-to-single-crystal (SC-SC) transformations and changing colour under light. Non-conventional synthetic approaches are also used for the synthesis of the POM clusters comparing the classical “one-pot” reaction conditions and exploring the synthetic parameters of the synthesis of POM compounds. Reactions under hydrothermal and flow conditions, where single crystals that depend on the solubility of the minerals under hot water and high pressure can be synthesized, resulted in the isolation of two isostructural compounds, namely, {Mo12V3Te5}. The compound isolated from a continuous processing method, crystallizes in a hexagonal crystal system, forming a 2D porous plane net, while the compound isolated using hard experimental conditions (high temperature and pressure) crystallizes in monoclinic system, resulting in a different packing configuration. Utilizing these alternative synthetic approaches, the most kinetically and thermodynamically compounds would possibly be isolated. These compounds were characterised by single-crystal X-ray diffraction, FT-IR and UV-vis spectroscopy. Finally, the redox-controlled driven oscillatory template exchange between phosphate (P) and vanadate (V) anions enclosed in an {M18O54(XO4)2} cluster is further investigated using UV-vis spectroscopy as a function of reaction time, showed that more than six complete oscillations interconverting the capsule species present in solution from {P2M18} to {V2M18} were possible, provided that a sufficient concentration of the TEA reducing agent was present in solution. In an effort to investigate the periodicity of the exchange of the phosphate and vanadate anions, time dependent Uv-vis measurements were performed for a period at a range of 170-550 hours. Different experimental conditions were also applied in order to investigate the role of the reducing agent, as well as the effect of other experimental variables on the oscillatory system.