3 resultados para Mini-scale method
em Glasgow Theses Service
Resumo:
Permeability of a rock is a dynamic property that varies spatially and temporally. Fractures provide the most efficient channels for fluid flow and thus directly contribute to the permeability of the system. Fractures usually form as a result of a combination of tectonic stresses, gravity (i.e. lithostatic pressure) and fluid pressures. High pressure gradients alone can cause fracturing, the process which is termed as hydrofracturing that can determine caprock (seal) stability or reservoir integrity. Fluids also transport mass and heat, and are responsible for the formation of veins by precipitating minerals within open fractures. Veining (healing) thus directly influences the rock’s permeability. Upon deformation these closed factures (veins) can refracture and the cycle starts again. This fracturing-healing-refacturing cycle is a fundamental part in studying the deformation dynamics and permeability evolution of rock systems. This is generally accompanied by fracture network characterization focusing on network topology that determines network connectivity. Fracture characterization allows to acquire quantitative and qualitative data on fractures and forms an important part of reservoir modeling. This thesis highlights the importance of fracture-healing and veins’ mechanical properties on the deformation dynamics. It shows that permeability varies spatially and temporally, and that healed systems (veined rocks) should not be treated as fractured systems (rocks without veins). Field observations also demonstrate the influence of contrasting mechanical properties, in addition to the complexities of vein microstructures that can form in low-porosity and permeability layered sequences. The thesis also presents graph theory as a characterization method to obtain statistical measures on evolving network connectivity. It also proposes what measures a good reservoir should have to exhibit potentially large permeability and robustness against healing. The results presented in the thesis can have applications for hydrocarbon and geothermal reservoir exploration, mining industry, underground waste disposal, CO2 injection or groundwater modeling.
Resumo:
Measuring the extent to which a piece of structural timber has distorted at a macroscopic scale is fundamental to assessing its viability as a structural component. From the sawmill to the construction site, as structural timber dries, distortion can render it unsuitable for its intended purposes. This rejection of unusable timber is a considerable source of waste to the timber industry and the wider construction sector. As such, ensuring accurate measurement of distortion is a key step in addressing ineffciencies within timber processing. Currently, the FRITS frame method is the established approach used to gain an understanding of timber surface profile. The method, while reliable, is dependent upon relatively few measurements taken across a limited area of the overall surface, with a great deal of interpolation required. Further, the process is unavoidably slow and cumbersome, the immobile scanning equipment limiting where and when measurements can be taken and constricting the process as a whole. This thesis seeks to introduce LiDAR scanning as a new, alternative approach to distortion feature measurement. In its infancy as a measurement technique within timber research, the practicalities of using LiDAR scanning as a measurement method are herein demonstrated, exploiting many of the advantages the technology has over current approaches. LiDAR scanning creates a much more comprehensive image of a timber surface, generating input data multiple magnitudes larger than that of the FRITS frame. Set-up and scanning time for LiDAR is also much quicker and more flexible than existing methods. With LiDAR scanning the measurement process is freed from many of the constraints of the FRITS frame and can be done in almost any environment. For this thesis, surface scans were carried out on seven Sitka spruce samples of dimensions 48.5x102x3000mm using both the FRITS frame and LiDAR scanner. The samples used presented marked levels of distortion and were relatively free from knots. A computational measurement model was created to extract feature measurements from the raw LiDAR data, enabling an assessment of each piece of timber to be carried out in accordance with existing standards. Assessment of distortion features focused primarily on the measurement of twist due to its strong prevalence in spruce and the considerable concern it generates within the construction industry. Additional measurements of surface inclination and bow were also made with each method to further establish LiDAR's credentials as a viable alternative. Overall, feature measurements as generated by the new LiDAR method compared well with those of the established FRITS method. From these investigations recommendations were made to address inadequacies within existing measurement standards, namely their reliance on generalised and interpretative descriptions of distortion. The potential for further uses of LiDAR scanning within timber researches was also discussed.
Resumo:
Background: The Flexibility of Responses to Self-Critical Thoughts Scale (FoReST) is a questionnaire that was developed to assess whether people can be psychologically flexible when experiencing critical thoughts about themselves. This measure could have important application for evaluating third wave therapies such as Acceptance and Commitment Therapy (ACT) and Compassion Focused therapy (CFT). This study investigated the validity (concurrent, predictive and incremental), internal consistency and factor structure of the FoReST in a sample of people experiencing mental health difficulties. Method: A total of 132 individuals attending Primary Care and Community Mental Health Teams within NHS Greater Glasgow and Clyde (NHS GGC) and Psychological Therapy Teams within NHS Lanarkshire participated in this study. Participants completed a battery of assessments that included the FoReST and related measures of similar constructs (psychological flexibility, self-compassion and self-criticism) and measures of mental health and well-being. A cross-sectional correlational design was used. Results: An Exploratory factor analysis described an interpretable 2-factor structure within the items of the FoReST: unworkable action and experiential avoidance. The FoReST demonstrated good internal consistency ( = .89). Concurrent validity was supported through moderate to strong correlations with similar measures and moderate correlations with other mental health and well-being outcomes. Conclusions: The FoReST appears to be a valid assessment measure for using with individuals experiencing mental health difficulties. This new measure will be of use for practitioners using ACT, CFT and those integrating both, to help monitor the process of change in flexibility and self-critical thinking across therapy. Further longitudinal studies are required to assess the test-retest reliability of the FoReST.