3 resultados para Microfluidic device

em Glasgow Theses Service


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Re-creating and understanding the origin of life represents one of the major challenges facing the scientific community. We will never know exactly how life started on planet Earth, however, we can reconstruct the most likely chemical pathways that could have contributed to the formation of the first living systems. Traditionally, prebiotic chemistry has investigated the formation of modern life’s precursors and their self-organisation under very specific conditions thought to be ‘plausible’. So far, this approach has failed to produce a living system from the bottom-up. In the work presented herein, two different approaches are employed to explore the transition from inanimate to living matter. The development of microfluidic technology during the last decades has changed the way traditional chemical and biological experiments are performed. Microfluidics allows the handling of low volumes of reagents with very precise control. The use of micro-droplets generated within microfluidic devices is of particular interest to the field of Origins of Life and Artificial Life. Whilst many efforts have been made aiming to construct cell-like compartments from modern biological constituents, these are usually very difficult to handle. However, microdroplets can be easily generated and manipulated at kHz rates, making it suitable for high-throughput experimentation and analysis of compartmentalised chemical reactions. Therefore, we decided to develop a microfluidic device capable of manipulating microdroplets in such a way that they could be efficiently mixed, split and sorted within iterative cycles. Since no microfluidic technology had been developed before in the Cronin Group, the first chapter of this thesis describes the soft lithographic methods and techniques developed to fabricate microfluidic devices. Also, special attention is placed on the generation of water-in-oil microdroplets, and the subsequent modules required for the manipulation of the droplets such as: droplet fusers, splitters, sorters and single/multi-layer micromechanical valves. Whilst the first part of this thesis describes the development of a microfluidic platform to assist chemical evolution, finding a compatible set of chemical building blocks capable of reacting to form complex molecules with endowed replicating or catalytic activity was challenging. Abstract 10 Hence, the second part of this thesis focuses on potential chemistry that will ultimately possess the properties mentioned above. A special focus is placed on the formation of peptide bonds from unactivated amino acids, despite being one of the greatest challenges in prebiotic chemistry. As opposed to classic prebiotic experiments, in which a specific set of conditions is studied to fit a particular hypothesis, we took a different approach: we explored the effects of several parameters at once on a model polymerisation reaction, without constraints on hypotheses on the nature of optimum conditions or plausibility. This was facilitated by development of a new high-throughput automated platform, allowing the exploration of a much larger number of parameters. This led us to discover that peptide bond formation is less challenging than previously imagined. Having established the right set of conditions under which peptide bond formation was enhanced, we then explored the co-oligomerisation between different amino acids, aiming for the formation of heteropeptides with different structure or function. Finally, we studied the effect of various environmental conditions (rate of evaporation, presence of salts or minerals) in the final product distribution of our oligomeric products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spinal cord injury (SCI) is a devastating condition, which results from trauma to the cord, resulting in a primary injury response which leads to a secondary injury cascade, causing damage to both glial and neuronal cells. Following trauma, the central nervous system (CNS) fails to regenerate due to a plethora of both intrinsic and extrinsic factors. Unfortunately, these events lead to loss of both motor and sensory function and lifelong disability and care for sufferers of SCI. There have been tremendous advancements made in our understanding of the mechanisms behind axonal regeneration and remyelination of the damaged cord. These have provided many promising therapeutic targets. However, very few have made it to clinical application, which could potentially be due to inadequate understanding of compound mechanism of action and reliance on poor SCI models. This thesis describes the use of an established neural cell co-culture model of SCI as a medium throughput screen for compounds with potential therapeutic properties. A number of compounds were screened which resulted in a family of compounds, modified heparins, being taken forward for more intense investigation. Modified heparins (mHeps) are made up of the core heparin disaccharide unit with variable sulphation groups on the iduronic acid and glucosamine residues; 2-O-sulphate (C2), 6-O-sulphate (C6) and N-sulphate (N). 2-O-sulphated (mHep6) and N-sulphated (mHep7) heparin isomers were shown to promote both neurite outgrowth and myelination in the SCI model. It was found that both mHeps decreased oligodendrocyte precursor cell (OPC) proliferation and increased oligodendrocyte (OL) number adjacent to the lesion. However, there is a difference in the direct effects on the OL from each of the mHeps; mHep6 increased myelin internode length and mHep7 increased the overall cell size. It was further elucidated that these isoforms interact with and mediate both Wnt and FGF signalling. In OPC monoculture experiments FGF2 treated OPCs displayed increased proliferation but this effect was removed when co-treated with the mHeps. Therefore, suggesting that the mHeps interact with the ligand and inhibit FGF2 signalling. Additionally, it was shown that both mHeps could be partially mediating their effects through the Wnt pathway. mHep effects on both myelination and neurite outgrowth were removed when co-treated with a Wnt signalling inhibitor, suggesting cell signalling mediation by ligand immobilisation and signalling activation as a mechanistic action for the mHeps. However, the initial methods employed in this thesis were not sufficient to provide a more detailed study into the effects the mHeps have on neurite outgrowth. This led to the design and development of a novel microfluidic device (MFD), which provides a platform to study of axonal injury. This novel device is a three chamber device with two chambers converging onto a central open access chamber. This design allows axons from two points of origin to enter a chamber which can be subjected to injury, thus providing a platform in which targeted axonal injury and the regenerative capacity of a compound study can be performed. In conclusion, this thesis contributes to and advances the study of SCI in two ways; 1) identification and investigation of a novel set of compounds with potential therapeutic potential i.e. desulphated modified heparins. These compounds have multiple therapeutic properties and could revolutionise both the understanding of the basic pathological mechanisms underlying SCI but also be a powered therapeutic option. 2) Development of a novel microfluidic device to study in greater detail axonal biology, specifically, targeted axonal injury and treatment, providing a more representative model of SCI than standard in vitro models. Therefore, the MFD could lead to advancements and the identification of factors and compounds relating to axonal regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes two separate projects. The first is a theoretical and experimental investigation of surface acoustic wave streaming in microfluidics. The second is the development of a novel acoustic glucose sensor. A separate abstract is given for each here. Optimization of acoustic streaming in microfluidic channels by SAWs Surface Acoustic Waves, (SAWs) actuated on flat piezoelectric substrates constitute a convenient and versatile tool for microfluidic manipulation due to the easy and versatile interfacing with microfluidic droplets and channels. The acoustic streaming effect can be exploited to drive fast streaming and pumping of fluids in microchannels and droplets (Shilton et al. 2014; Schmid et al. 2011), as well as size dependant sorting of particles in centrifugal flows and vortices (Franke et al. 2009; Rogers et al. 2010). Although the theory describing acoustic streaming by SAWs is well understood, very little attention has been paid to the optimisation of SAW streaming by the correct selection of frequency. In this thesis a finite element simulation of the fluid streaming in a microfluidic chamber due to a SAW beam was constructed and verified against micro-PIV measurements of the fluid flow in a fabricated device. It was found that there is an optimum frequency that generates the fastest streaming dependent on the height and width of the chamber. It is hoped this will serve as a design tool for those who want to optimally match SAW frequency with a particular microfluidic design. An acoustic glucose sensor Diabetes mellitus is a disease characterised by an inability to properly regulate blood glucose levels. In order to keep glucose levels under control some diabetics require regular injections of insulin. Continuous monitoring of glucose has been demonstrated to improve the management of diabetes (Zick et al. 2007; Heinemann & DeVries 2014), however there is a low patient uptake of continuous glucose monitoring systems due to the invasive nature of the current technology (Ramchandani et al. 2011). In this thesis a novel way of monitoring glucose levels is proposed which would use ultrasonic waves to ‘read’ a subcutaneous glucose sensitive-implant, which is only minimally invasive. The implant is an acoustic analogy of a Bragg stack with a ‘defect’ layer that acts as the sensing layer. A numerical study was performed on how the physical changes in the sensing layer can be deduced by monitoring the reflection amplitude spectrum of ultrasonic waves reflected from the implant. Coupled modes between the skin and the sensing layer were found to be a potential source of error and drift in the measurement. It was found that by increasing the number of layers in the stack that this could be minimized. A laboratory proof of concept system was developed using a glucose sensitive hydrogel as the sensing layer. It was possible to monitor the changing thickness and speed of sound of the hydrogel due to physiological relevant changes in glucose concentration.