3 resultados para Mercy killing

em Glasgow Theses Service


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the regulatory and legislative approach taken in the United Kingdom to deal with deaths arising from work related activities and, in particular, deaths that can be directly attributed to the behaviour of corporations and other organisations. Workplace health and safety has traditionally been seen in the United Kingdom as a regulatory function which can be traced to the very earliest days of the Industrial Revolution. With an emphasis on preventing workplace accidents and ill-health through guidance, advice and support, the health and safety legislation and enforcement regime which had evolved over the best part of two centuries was considered inadequate to effectively punish corporations considered responsible for deaths caused by their activities following a series of disasters in the late twentieth and early twenty-first centuries. To address this apparent inadequacy, the Corporate Manslaughter and Corporate Homicide Act 2007 was introduced creating the offence of corporate manslaughter and corporate homicide. Based on a gross breach of a relevant duty of care resulting in the death of a person, the Act effectively changed what had previously considered a matter of regulation, an approach that had obvious weaknesses and shortcomings, to one of crime and criminal law. Whether this is the best approach to dealing with deaths caused by an organisation is challenged in this thesis and the apparent distinction between ‘criminal’ and ‘regulatory’ offences is also examined. It was found that an amended Health and Safety at Work etc. Act 1974 to include a specific offence of corporate killing, in conjunction with the Health and Safety (Offences) Act 2008 would almost certainly have resulted in a more effective approach to dealing with organisations responsible for causing deaths as consequence of their activities. It was also found that there was no substantive difference between ‘regulatory’ and ‘criminal’ law other than the stigma associated with the latter, and that distinction would almost certainly disappear, at least in the context of worker safety, as a consequence of the penalties available following the introduction of the Health and Safety (Offences) Act 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inbred strains of C5731 and NIH nice infected with the A/S strain of Plasmodium chaubaudi usually developed high parasitaemias but infections were rarely fatal in immunocompetent mice and in most mice the parasites could be eradicated within 53 days or less. The immune response of C57B1 and NTH mice to infection with the A/S strain of P. chabaudi was studied. The principle method used in this study for investigating the immune response of the mice was to examine the immunity conferred on syngeneic mice, either X-irradiated or non-irradiated, by transferring to them lymphoid cells or serum from immune or semi-immune donors. The lymphoid cell populations examined were unfractionated spleen cells, nylon wool column enriched subpopulations of thymus-derived lymphocytes (T cells) and the so-called bursa-derived lymphocytes (B cells), bone marrow cells and phagocytic cells. In the course of these experiments observations were made on the effect of X-irradiation on the subsequent growth and multiplication of the parasite. In addition, an in vitro assay for antibody-dependent cell mediated cytotoxicity was used to investigate the activity of splenic K cells during malaria infection. K cells are lymphoid cells which may include lymphocytes of an undefined category, but possess receptors for the Fc portion of antibody on their surface and have the ability to non-specifically lyse target cells coated in antibodies. a) The adoptive transfer of immunity to P.chabaudi with immune spleen cells. Spleen cells from mice which had previously been infected with P.chabaudi were able to confer some immunity on syngeneic mice which had been irradiated with 600 or 800 rads. The protection was detected as a shortened patent parasitaemia in immune cell recipients compared to controls. The early experiments indicated the value of using irradiated recipients rather than non-irradiated recipients. In irradiated mice, a) smaller numbers of immune cells were required to promote detectable immunity than in non-irradiated mice, b) there was an amplification of the difference in the duration of primary parasitaemias in recipients of immune cells and normal cells compared to non-irradiated mice and c) as the irradiated host is immunodepressed, the protective effect of donor cells can be examined with a reduced contribution by the hosts own immune system. An initial non-specific resistance to P.chabaudi infection was observed in irradiated mice, although the infection in most of these mice was subsequently more severe than in non-irradiated mice. The non-specific resistance could be reduced or abolished by injecting lymphoid cells into mice shortly after irradiation or by infecting irradiated mice more than 15 days after irradiation. Other workers suggest that following irradiation, the reticulo-endothelial system is stimulated at the time that the non-specific resistance to P.chabaudi was observed. b) the adoptive transfer of immunity in syngeneic mice with enriched subpopulations of splenic immune T cells, B. cells, bone marrow cells and phagocytes. Immunity to P.chabaudi could be adoptively transferred with enriched spleen subpopulations of immune T cells or immune B cells in mice which had been irradiated 600 or 300 rads. The protective effects of unfractionated immune cells was, however, usually better than that of either immune T or F cell subpopulations. In most experiments enriched immune T cell recipients were more likely to suffer relapsing patent parasitaemias than either enriched immune B cell recipients or unfractionated immune cell recipients. In one experiment a comparison was made of the course of P.chabaudi infection in mice which had been irradiated with either 600 rads or 300 rads and which received injections of different immune cells. A dose of 600 rads permits the immune system of mice to recover from the effects of irradiation, but a dose of 800 rads is lethal to mice unless lymphoid cells are injected after irradiation. It was found that in recipients of enriched immune T or B cells, which had been irradiated with 600 rads, the parasitaemia became subpatent before their equivalents irradiated with 800 rads, but that there was little difference in parasitaemias between recipients of unfractionated immune cells given 600 or 800 rads. Experiments in which enriched immune T cells and B cells were recombined and injected into syngeneic mice gave inconclusive results as to whether the immune subpopulations acted synergistically. Similar experiments in which immune subpopulations of lymphoid cells were recombined with normal subpopulations of lymphoid cells demonstrated that the latter cells did not enhance the protective effect of the former cells. Bone marrow cells from immune mice were able to confer some protection on syngeneic recipients, but were not as protective as enriched immune T cells or B cells. The results obtained in adoptive transfer experiments using phagocytic cells from the spleen of immune mice depended on the length of time spleen cells were incubated in petri-dishes at 37° C before harvesting the phagocytes. Using C57B1 mice, phagocytes harvested after 15 hours incubation were as protective as unfractionated immune cells in a cell transfer experiment, but phagocytes harvested after 16 hours incubation were not protective. Examination of NIH phagocytic cells after 2.5 hours incubation at 37°C, which were as protective as unfractionated immune spleen cells in a cell transfer experiment, demonstrated that the petri-dish adherent cells may have contained B lymphocytes. c) The passive transfer of immunity with serum from P.chabaudi infected mice. The passive transfer of serum from C57B1 mice which had been previously infected with P.chabaudi to normal or irradiated syngeneic mice demonstrated that the serum recipients were initially protected from infection. Irradiated mice, however, were delayed longer in the onset of parasitaemia compared to non-irradiated mice. Using NIH mice, sera were collected from unfractionated immune spleen cell recipients, enriched immune T cell recipients and normal spleen recipients on the 11th day of a P.chabaudi infection, just after peak parasitaemia, and also on the 14th day of infection. On day 14, all immune cells recipients and most of the enriched immune T cell recipients had become subpatent but all normal cell recipients still had patent infections. Sera collected from the different spleen cell recipients on the 11th day of infection and passively transferred to irradiated mice demonstrated little protection. Sera collected on the 14th day of infect ion, however, reflected the immune status of the donors in their protective properties in mice infected with P.chabaudi. The serum from unfractionated immune cell recipients was the most protective of the 3 sera when compared to normal NIH serum and the serum from enriched immune T cell recipients was slightly protective, but the serum from normal cell recipients produced an enhanced infection in mice infected with P.chabaudi. d) Antibody-dependent cell-mediated cytotoxicity of spleen cells in P.chabaudi infected mice. In a preliminary investigation of K cell activity in the spleens of P.chabaudi infected mice, it was found that there was an increased activity of K cells collected at around peak parasitaemia compared to the activity of K cells in non-infected mice, and that this increased activity could also be found in mice which had recently become subpatent. As the target cell for antibody-dependent cell-mediated cytotoxicity employed was the thick red blood cell, it is not known whether the K cell is involved in the killing of P.chabaudi parasites. These results suggest that both T cells and B cells and antibody may be important in the immune response to P.chabaudi in mice. Primed T cells may act as helper cells in the production of malarial antibodies, but, as enriched primed T cells could confer protection on immunodepressed mice, it is possible that a cell-mediated mechanism of immunity may also exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campylobacter is a major cause of acute bacterial gastroenteritis worldwide, with the highest number of infections being attributed to Campylobacter jejuni. C. jejuni is a Gram negative, spiral, motile bacterium that belongs to the campylobacterales order and is related to both Helicobacter spp. and Wolinella sp.. It has long been established that proton pump inhibitors (PPIs) and other benzimidazole derivatives display anti-Helicobacter activity in vitro. PPIs have in the past been shown to affect Helicobacter pylori growth, survival, motility, morphology, adhesion/invasion potential and susceptibility to conventional antibiotics. PPIs are highly effective drugs that are well tolerated, safe for prolonged daily use and are therefore in high demand. Both the PPIs omeprazole and lansoprazole featured in the top ten drugs prescribed in England in 2014. In 2014 Campylobacter was also the most commonly diagnosed gastrointestinal infection in Scotland, in England and Wales and also in Europe. It has previously been generally accepted that patients who are being treated with PPIs are more susceptible to enteric infections such as Campylobacter than people not taking PPIs. The effect of PPI exposure on H. pylori has been investigated rigorously in the past. A single previous study has hinted that PPIs may also be capable of affecting the related organism C. jejuni,but investigations have been extremely limited in comparison to those investigating the effect of PPIs on H. pylori. This study has investigated the in vitro effects of direct contact with PPIs on the biology ofC. jejuni. Exposure to the PPI pantoprazole was found to affect C. jejuni growth/survival, motility, morphology, biofilm formation, invasion potential and susceptibility to some conventional antibiotics. Microarray studies showed that the cmeA and Cj0561c genes were significantly up-regulated in response to pantoprazole exposure and a CmeABC deficient mutant was found to be significantly more susceptible to killing by pantoprazole than was the parent strain. Proteomic analysis indicated that the oxidative stress response of C. jejuni was induced following exposure to sub-lethal concentrations of pantoprazole. C. jejuni gene expression was assessed using qRT-PCR and the genes encoding for thiol peroxidase and GroEL co-chaperonin (both involved in the C. jejuni oxidative stress response) were found to be around four times higher in response to exposure to sub-lethal concentrations of pantoprazole. Experiments using the oxidative stress inhibitors thiourea (a hydroxyl radical quencher) and bipyridyl (a ferrous iron chelator) showed that killing by pantoprazole was not mediated by hydroxyl radical production.