2 resultados para Mean Transit Time

em Glasgow Theses Service


Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been proposed that long-term consumption of diets rich in non-digestible carbohydrates (NDCs), such as cereals, fruit and vegetables might protect against several chronic diseases, however, it has been difficult to fully establish their impact on health in epidemiology studies. The wide range properties of the different NDCs may dilution their impact when they are combined in one category for statistical comparisons in correlations or multivariate analysis. Several mechanisms have been suggested to explain the protective effects of NDCs, including increased stool bulk, dilution of carcinogens in the colonic lumen, reduced transit time, lowering pH, and bacterial fermentation to short chain fatty acids (SCFA) in the colon. However, it is very difficult to measure SCFA in humans in vivo with any accuracy, so epidemiological studies on the impact of SCFA are not feasible. Most studies use dietary fibre (DF) or Non-Starch Polysaccharides (NSP) intake to estimate the levels, but not all fibres or NSP are equally fermentable. It has been proposed that long-term consumption of diets rich in non-digestible carbohydrates (NDCs), such as cereals, fruit and vegetables might protect against several chronic diseases, however, it has been difficult to fully establish their impact on health in epidemiology studies. The wide range properties of the different NDCs may dilution their impact when they are combined in one category for statistical comparisons in correlations or multivariate analysis. Several mechanisms have been suggested to explain the protective effects of NDCs, including increased stool bulk, dilution of carcinogens in the colonic lumen, reduced transit time, lowering pH, and bacterial fermentation to short chain fatty acids (SCFA) in the colon. However, it is very difficult to measure SCFA in humans in vivo with any accuracy, so epidemiological studies on the impact of SCFA are not feasible. Most studies use dietary fibre (DF) or Non-Starch Polysaccharides (NSP) intake to estimate the levels, but not all fibres or NSP are equally fermentable. The first aim of this thesis was the development of the equations used to estimate the amount of FC that reaches the human colon and is fermented fully to SCFA by the colonic bacteria. Therefore, several studies were examined for evidence to determine the different percentages of each type of NDCs that should be included in the final model, based on how much NDCs entered the colon intact and also to what extent they were fermented to SCFA in vivo. Our model equations are FC-DF or NSP$ 1: 100 % Soluble + 10 % insoluble + 100 % NDOs¥ + 5 % TS** FC-DF or NSP 2: 100 % Soluble + 50 % insoluble + 100 % NDOs + 5 % TS FC-DF* or NSP 3: 100 % Soluble + 10 % insoluble + 100 % NDOs + 10 % TS FC-DF or NSP 4: 100 % Soluble + 50 % insoluble + 100 % NDOs + 10 % TS *DF: Dietary fibre; **TS: Total starch; $NSP: non-starch polysaccharide; ¥NDOs: non-digestible oligosaccharide The second study of this thesis aimed to examine all four predicted FC-DF and FC-NSP equations developed, to estimate FC from dietary records against urinary colonic NDCs fermentation biomarkers. The main finding of a cross-sectional comparison of habitual diet with urinary excretion of SCFA products, showed weak but significant correlation between the 24 h urinary excretion of SCFA and acetate with the estimated FC-DF 4 and FC-NSP 4 when considering all of the study participants (n = 122). Similar correlations were observed with the data for valid participants (n = 78). It was also observed that FC-DF and FC-NSP had positive correlations with 24 h urinary acetate and SCFA compared with DF and NSP alone. Hence, it could be hypothesised that using the developed index to estimate FC in the diet form dietary records, might predict SCFA production in the colon in vivo in humans. The next study in this thesis aimed to validate the FC equations developed using in vitro models of small intestinal digestion and human colon fermentation. The main findings in these in vitro studies were that there were several strong agreements between the amounts of SCFA produced after actual in vitro fermentation of single fibre and different mixtures of NDCs, and those predicted by the estimated FC from our developed equation FC-DF 4. These results which demonstrated a strong relationship between SCFA production in vitro from a range of fermentations of single fibres and mixtures of NDCs and that from the predicted FC equation, support the use of the FC equation for estimation of FC from dietary records. Therefore, we can conclude that the newly developed predicted equations have been deemed a valid and practical tool to assess SCFA productions for in vitro fermentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis investigates how web search evaluation can be improved using historical interaction data. Modern search engines combine offline and online evaluation approaches in a sequence of steps that a tested change needs to pass through to be accepted as an improvement and subsequently deployed. We refer to such a sequence of steps as an evaluation pipeline. In this thesis, we consider the evaluation pipeline to contain three sequential steps: an offline evaluation step, an online evaluation scheduling step, and an online evaluation step. In this thesis we show that historical user interaction data can aid in improving the accuracy or efficiency of each of the steps of the web search evaluation pipeline. As a result of these improvements, the overall efficiency of the entire evaluation pipeline is increased. Firstly, we investigate how user interaction data can be used to build accurate offline evaluation methods for query auto-completion mechanisms. We propose a family of offline evaluation metrics for query auto-completion that represents the effort the user has to spend in order to submit their query. The parameters of our proposed metrics are trained against a set of user interactions recorded in the search engine’s query logs. From our experimental study, we observe that our proposed metrics are significantly more correlated with an online user satisfaction indicator than the metrics proposed in the existing literature. Hence, fewer changes will pass the offline evaluation step to be rejected after the online evaluation step. As a result, this would allow us to achieve a higher efficiency of the entire evaluation pipeline. Secondly, we state the problem of the optimised scheduling of online experiments. We tackle this problem by considering a greedy scheduler that prioritises the evaluation queue according to the predicted likelihood of success of a particular experiment. This predictor is trained on a set of online experiments, and uses a diverse set of features to represent an online experiment. Our study demonstrates that a higher number of successful experiments per unit of time can be achieved by deploying such a scheduler on the second step of the evaluation pipeline. Consequently, we argue that the efficiency of the evaluation pipeline can be increased. Next, to improve the efficiency of the online evaluation step, we propose the Generalised Team Draft interleaving framework. Generalised Team Draft considers both the interleaving policy (how often a particular combination of results is shown) and click scoring (how important each click is) as parameters in a data-driven optimisation of the interleaving sensitivity. Further, Generalised Team Draft is applicable beyond domains with a list-based representation of results, i.e. in domains with a grid-based representation, such as image search. Our study using datasets of interleaving experiments performed both in document and image search domains demonstrates that Generalised Team Draft achieves the highest sensitivity. A higher sensitivity indicates that the interleaving experiments can be deployed for a shorter period of time or use a smaller sample of users. Importantly, Generalised Team Draft optimises the interleaving parameters w.r.t. historical interaction data recorded in the interleaving experiments. Finally, we propose to apply the sequential testing methods to reduce the mean deployment time for the interleaving experiments. We adapt two sequential tests for the interleaving experimentation. We demonstrate that one can achieve a significant decrease in experiment duration by using such sequential testing methods. The highest efficiency is achieved by the sequential tests that adjust their stopping thresholds using historical interaction data recorded in diagnostic experiments. Our further experimental study demonstrates that cumulative gains in the online experimentation efficiency can be achieved by combining the interleaving sensitivity optimisation approaches, including Generalised Team Draft, and the sequential testing approaches. Overall, the central contributions of this thesis are the proposed approaches to improve the accuracy or efficiency of the steps of the evaluation pipeline: the offline evaluation frameworks for the query auto-completion, an approach for the optimised scheduling of online experiments, a general framework for the efficient online interleaving evaluation, and a sequential testing approach for the online search evaluation. The experiments in this thesis are based on massive real-life datasets obtained from Yandex, a leading commercial search engine. These experiments demonstrate the potential of the proposed approaches to improve the efficiency of the evaluation pipeline.