2 resultados para Matter paragraphs in audit reports

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical places are given contextual meaning by the objects and people that make up the space. Presence in physical places can be utilised to support mobile interaction by making access to media and notifications on a smartphone easier and more visible to other people. Smartphone interfaces can be extended into the physical world in a meaningful way by anchoring digital content to artefacts, and interactions situated around physical artefacts can provide contextual meaning to private manipulations with a mobile device. Additionally, places themselves are designed to support a set of tasks, and the logical structure of places can be used to organise content on the smartphone. Menus that adapt the functionality of a smartphone can support the user by presenting the tools most likely to be needed just-in-time, so that information needs can be satisfied quickly and with little cognitive effort. Furthermore, places are often shared with people whom the user knows, and the smartphone can facilitate social situations by providing access to content that stimulates conversation. However, the smartphone can disrupt a collaborative environment, by alerting the user with unimportant notifications, or sucking the user in to the digital world with attractive content that is only shown on a private screen. Sharing smartphone content on a situated display creates an inclusive and unobtrusive user experience, and can increase focus on a primary task by allowing content to be read at a glance. Mobile interaction situated around artefacts of personal places is investigated as a way to support users to access content from their smartphone while managing their physical presence. A menu that adapts to personal places is evaluated to reduce the time and effort of app navigation, and coordinating smartphone content on a situated display is found to support social engagement and the negotiation of notifications. Improving the sensing of smartphone users in places is a challenge that is out-with the scope of this thesis. Instead, interaction designers and developers should be provided with low-cost positioning tools that utilise presence in places, and enable quantitative and qualitative data to be collected in user evaluations. Two lightweight positioning tools are developed with the low-cost sensors that are currently available: The Microsoft Kinect depth sensor allows movements of a smartphone user to be tracked in a limited area of a place, and Bluetooth beacons enable the larger context of a place to be detected. Positioning experiments with each sensor are performed to highlight the capabilities and limitations of current sensing techniques for designing interactions with a smartphone. Both tools enable prototypes to be built with a rapid prototyping approach, and mobile interactions can be tested with more advanced sensing techniques as they become available. Sensing technologies are becoming pervasive, and it will soon be possible to perform reliable place detection in-the-wild. Novel interactions that utilise presence in places can support smartphone users by making access to useful functionality easy and more visible to the people who matter most in everyday life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.