3 resultados para Matabolism of Nueleic Acids Activities of Hydroiytic Enzymes
em Glasgow Theses Service
Resumo:
The leishmaniases are neglected tropical diseases with an urgent need for effective drugs. Better understanding of the metabolism of the causative parasites will hopefully lead to development of new compounds targeted at critical points of the parasite’s biochemical pathways. In my work I focused on the pentose phosphate pathway of Leishmania, specifically on transketolase, sugar utilisation, and comparison between insect and mammalian infective stages of the parasites. The pentose phosphate pathway (PPP) is the major cellular source of NADPH, an agent critical for oxidative stress defence. The PPP uses glucose, reduces the NADP+ cofactor and produces various sugar phosphates by mutual interconversions. One of the enzymes involved in this latter part is transketolase (TKT). A Leishmania mexicana cell line deleted in transketolase (Δtkt) was assessed regarding viability, sensitivity to a range of drugs, changes in metabolism, and infectivity. The Δtkt cell line had no obvious growth defect in the promastigote stage, but it was more sensitive to an oxidative stress inducing agent and most of the drugs tested. Most importantly, the Δtkt cells were not infective to mice, establishing TKT as a new potential drug target. Metabolomic analyses revealed multiple changes as a consequence of TKT deletion. Levels of the PPP intermediates upstream of TKT increased substantially, and were diverted into additional reactions. The perturbation triggered further changes in metabolism, resembling the ‘stringent metabolic response’ of amastigotes. The Δtkt cells consumed less glucose and glycolytic intermediates were decreased indicating a decrease in flux, and metabolic end products were diminished in production. The decrease in glycolysis was possibly caused by inhibition of fructose-1,6-bisphosphate aldolase by accumulation of the PPP intermediates 6-phosphogluconate and ribose 5-phosphate. The TCA cycle was fuelled by alternative carbon sources, most likely amino acids, instead of glucose. It remains unclear why deletion of TKT is lethal for amastigotes, increased sensitivity to oxidative stress or drop in mannogen levels may contribute, but no definite conclusions can be made. TKT localisation indicated interesting trends too. The WT enzyme is present in the cytosol and glycosomes, whereas a mutant version, truncated by ten amino acids, but retaining a C-terminal targeting sequence, localised solely to glycosomes. Surprisingly, cells expressing purely cytosolic or glycosomal TKT did not have different phenotypes regarding growth, oxidative stress sensitivity or any detected changes in metabolism. Hence, control of the subcellular localisation remains unclear as well as its function. However, these data are in agreement with the presumed semipermeable nature of the glycosome. Further, L. mexicana promastigote cultures were grown in media with different combinations of labelled glucose and ribose and their incorporation into metabolism was followed. Glucose was the preferred carbon source, but when not available, it could be fully replaced with ribose. I also compared metabolic profiles from splenic amastigotes, axenic amastigotes and promastigotes of L. donovani. Metabolomic analysis revealed a substantial drop in amino acids and other indications coherent with a stringent metabolic response in amastigotes. Despite some notable differences, axenic and splenic amastigotes demonstrated fairly similar results both regarding the total metabolic profile and specific metabolites of interest.
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in equine veterinary practice. These drugs exert their effect by inhibiting cyclooxygenase (COX) enzymes, which control prostaglandin production, a major regulator of tissue perfusion. Two isoforms of COX enzymes exist: COX-1 is physiologically present in tissues, while COX-2 is up-regulated during inflammation and has been indicated as responsible for the negative effects of an inflammatory response. Evidence suggests that NSAIDs that inhibit only COX-2, preserving the physiological function of COX-1 might have a safer profile. Studies that evaluate the effect of NSAIDs on COX enzymes are all performed under experimental conditions and none uses actual clinical patients. The biochemical investigations in this work focus on describing the effect on COX enzymes activity of flunixin meglumine and phenylbutazone, two non-selective COX inhibitors and firocoxib, a COX-2 selective inhibitor, in clinical patients undergoing elective surgery. A separate epidemiological investigation was aimed at describing the impact that the findings of biochemical data have on a large population of equids. Electronic medical records (EMRs) from 454,153 equids were obtained from practices in the United Kingdom, United States of America and Canada. Information on prevalence and indications for NSAIDs use was extracted from the EMRs via a text mining technique, improved from the literature and described and validated within this Thesis. Further the prevalence of a clinical sign compatible with NSAID toxicity, such as diarrhoea, is reported along with analysis evaluating NSAID administration in light of concurrent administration of other drugs and comorbidities. This work confirms findings from experimental settings that NSAIDs firocoxib is COX-2 selective and that flunixin meglumine and phenylbutazone are non-selective COX inhibitors and therefore their administration carries a greater risk of toxicity. However the impact of this finding needs to be interpreted with caution as epidemiological data suggest that the prevalence of toxicity is in fact small and the use of these drugs at the labelled dose is quite safe.
Resumo:
Enzyme immobilisation is the conversion of a soluble enzyme molecule into a solid particle form. This allows the recovery of the enzyme catalyst for its re-use and avoids protein contamination of the product streams. A better understanding of immobilised enzymes is necessary for their rational development. A more rational design can help enormously in the applicability of these systems in different areas, from biosensors to chemical industry. Immobilised enzymes are challenging systems to study and very little information is given by conventional biochemical analysis such as catalytic activity and amount of protein. Here, solid-state NMR has been applied as the main technique to study these systems and evaluate them more precisely. Various approaches are presented for a better understanding of immobilised enzymes, which is the aim of this thesis. Firstly, the requirements of a model system of study will be discussed. The selected systems will be comprehensibly characterised by a variety of techniques but mainly by solid-state NMR. The chosen system will essentially be the enzyme α-chymotrypsin covalently immobilised on two functionalised inorganic supports – epoxide silica and epoxide alumina – and an organic support – Eupergit®. The study of interactions of immobilised enzymes with other species is vital for understanding the macromolecular function and for predicting and engineering protein behaviour. The study of water, ions and inhibitors interacting with various immobilised enzyme systems is covered here. The interactions of water and sodium ions were studied by 17O and 23Na multiple-quantum techniques, respectively. Various pore sizes of the supports were studied for the immobilised enzyme in the presence of labelled water and sodium cations. Finally, interactions between two fluorinated inhibitors and the active site of the enzyme will be explored using 19F NMR, offering a unique approach to evaluate catalytic behaviour. These interactions will be explored by solution-state NMR firstly, then by solid-state NMR. NMR has the potential to give information about the state of the protein in the solid support, but the precise molecular interpretation is a difficult task.