2 resultados para MOLECULAR CONTROL

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital heart disease (CHD) is the most common birth defect, causing an important rate of morbidity and mortality. Treatment of CHD requires surgical correction in a significant percentage of cases which exposes patients to cardiac and end organ injury. Cardiac surgical procedures often require the utilisation of cardiopulmonary bypass (CPB), a system that replaces heart and lungs function by diverting circulation into an external circuit. The use of CPB can initiate potent inflammatory responses, in addition a proportion of procedures require a period of aortic cross clamp during which the heart is rendered ischaemic and is exposed to injury. High O2 concentrations are used during cardiac procedures and when circulation is re-established to the heart which had adjusted metabolically to ischaemia, further injury is caused in a process known as ischaemic reperfusion injury (IRI). Several strategies are in place in order to protect the heart during surgery, however injury is still caused, having detrimental effects in patients at short and long term. Remote ischaemic preconditioning (RIPC) is a technique proposed as a potential cardioprotective measure. It consists of exposing a remote tissue bed to brief episodes of ischaemia prior to surgery in order to activate protective pathways that would act during CPB, ischaemia and reperfusion. This study aimed to assess RIPC in paediatric patients requiring CHD surgical correction with a translational approach, integrating clinical outcome, marker analysis, cardiac function parameters and molecular mechanisms within the cardiac tissue. A prospective, single blinded, randomized, controlled trial was conducted applying a RIPC protocol to randomised patients through episodes of limb ischaemia on the day before surgery which was repeated right before the surgery started, after anaesthesia induction. Blood samples were obtained before surgery and at three post-operative time points from venous lines, additional pre and post-bypass blood samples were obtained from the right atrium. Myocardial tissue was resected during the ischaemic period of surgery. Echocardiographic images were obtained before the surgery started after anaesthetic induction and the day after surgery, images were stored for later off line analysis. PICU surveillance data was collected including ventilation parameters, inotrope use, standard laboratory analysis and six hourly blood gas analysis. Pre and post-operative quantitation of markers in blood specimens included cardiac troponin I (cTnI) and B-type natriuretic peptide (BNP), inflammatory mediators including interleukins IL-6, IL-8, IL-10, tumour necrosis factor (TNF-α), and the adhesion molecules ICAM-1 and VCAM-1; the renal marker Cystatin C and the cardiovascular markers asymmetric dymethylarginine (ADMA) and symmetric dymethylarginine (SDMA). Nitric oxide (NO) metabolites and cyclic guanosine monophosphate (cGMP) were measured before and after bypass. Myocardial tissue was processed at baseline and after incubation at hyperoxic concentration during four hours in order to mimic surgical conditions. Expression of genes involved in IRI and RIPC pathways was analysed including heat shock proteins (HSPs), toll like receptors (TLRs), transcription factors nuclear factor κ-B (NF- κ-B) and hypoxia inducible factor 1 (HIF-1). The participation of hydrogen sulfide enzymatic genes, apelin and its receptor were explored. There was no significant difference according to group allocation in any of the echocardiographic parameters. There was a tendency for higher cTnI values and inotropic score in control patients post-operatively, however this was not statistically significant. BNP presented no significant difference according to group allocation. Inflammatory parameters tended to be higher in the control group, however only TNF- α was significantly higher. There was no difference in levels of Cystatin C, NO metabolites, cGMP, ADMA or SDMA. RIPC patients required shorter PICU stay, all other clinical and laboratory analysis presented no difference related to the intervention. Gene expression analysis revealed interesting patterns before and after incubation. HSP-60 presented a lower expression at baseline in tissue corresponding to RIPC patients, no other differences were found. This study provided with valuable descriptive information on previously known and newly explored parameters in the study population. Demographic characteristics and the presence of cyanosis before surgery influenced patterns of activity in several parameters, numerous indicators were linked to the degree of injury suffered by the myocardium. RIPC did not reduce markers of cardiac injury or improved echocardiographic parameters and it did not have an effect on end organ function; some effects were seen in inflammatory responses and gene expression analysis. Nevertheless, an important clinical outcome indicator, PICU length of stay was reduced suggesting benefit from the intervention. Larger studies with more statistical power could determine if the tendency of lower injury and inflammatory markers linked to RIPC is real. The present results mostly support findings of larger multicentre trials which have reported no cardiac benefit from RIPC in paediatric cardiac surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malignant Catarrhal Fever (MCF), an often-lethal infectious disease, presents as a variable complex of lesions in susceptible ungulate species. The disease is caused by a -herpesvirus following transmission from an inapparent carrier host. Two major epidemiological forms exist: wildebeest-associated MCF (WA-MCF), in which the virus is transmitted to susceptible species by wildebeest calves less than approximately four months of age, and sheepassociated MCF (SA-MCF) in which the virus is spread by sheep (primarily adolescents). Due to the lack of an in-vitro propagation system for the causative agent of the more economically significant SA-MCF, and with the expectation that cross-protective immunity may be provided, vaccine development has focused on the more easily propagated alcelaphine herpesvirus-1 (AlHV-1) that causes WA-MCF. In 2008 a direct viral challenge trial showed that a novel vaccine, employing an attenuated AlHV-1 (atAlHV-1) `C5000 virus strain, protected British Friesian-Holstein (FH) cattle against an intranasal challenge with virulent AlHV-1 `C5000 virus. For cattle keeping people living near wildebeest calving areas in sub-Saharan Africa an effective vaccine would have value as it would release them from the costly annual disease avoidance strategy of having to move their herds away from the oncoming wildebeest. On the other hand, an effective vaccine will release herd owners from the need to avoid MCF, allowing them to graze their cattle alongside wildebeest on the highly nutritious pastures of the calving areas. As such conservationists have raised concerns that the development of a vaccine might lead to detrimental grazing competition. The principle objective of this study was to test the novel vaccine on Tanzanian shorthorn zebu cross cattle (SZC).We did this firstly using a natural challenge field trial (Chapter Two) which demonstrated that immunisation with the atAlHV-1 vaccine was well tolerated and induced an oro-nasopharyngeal AlHV-1-specific and -neutralising antibody response. This resulted in an immunity in SZC cattle that was partially protective and reduced naturally transmitted infection by 56%. We also demonstrated that non-fatal infections occurred with a much higher frequency than previously thought. Because the calculated efficacy of the vaccine was less than that seen in British FH cattle we wanted to determine whether host factors, particular to SZC cattle, had impacted the outcomes of the field trial. To do this we repeated the 2008 direct viral challenge trial using SZC cattle (Chapter Four). During this trial we also investigated whether the recombinant bacterial flagellin monomer (FliC), when used as an adjuvant, might improve the vaccine’s efficacy. The findings from this trial indicated that direct challenge with pathogenic AlHV-1 is effective at inducing MCF in SZC cattle and that FliC is not an appropriate adjuvant for this vaccine. Furthermore, with less control group cattle dying of MCF than expected we speculate that SZC cattle may have a degree of resistance to MCF that affords them protection from infection and developing fatal disease. In Chapter Three we investigated aspects of the epidemiology of MCF, specifically whether wildebeest placenta, long implicated by Maasai cattle owners as a source of MCF, might play a role in viral transmission. Additionally, through comparative sequence analysis, at two specific genes (A9.5 and ORF50) of wild-type and atAlHV-1, we investigated whether the `C5000 strain, the source of which was taken from Africa more than 40 years ago, was appropriate for vaccine development. The detection of AlHV-1 virus in approximately 50% of placentae indicated that infection can occur in-utero and that this tissue might play a role in disease transmission. And, despite describing three new alleles of the A9.5 gene (supporting previous evidence that this gene is polymorphic and encodes a secretory protein with interleukin-4 as the major homologue), the observation that the most frequently detected haplotypes, in both wild-type and attenuated AlHV-1, were identical suggests that AlHV-1 has a slow molecular clock and that the attenuated strain was appropriate for vaccine development. In Chapter Five we present the first quantitative assessment of the annual MCF avoidance costs that Maasai pastoralists incur. In particular we estimated that as a result of MCF avoidance 64% of the total daily milk yield during the MCF season was not available to be used by the 81% of the family unit remaining at the permanent boma. This represents an upper-bound loss of approximately 8% of a household0s annual income. Despite these considerable losses we concluded that, given an incidence of fatal MCF in cattle living in wildebeest calving areas of 5% to 10%, if herd owners were to stop trying to avoid MCF by allowing their cattle to graze alongside wildebeest, any gains made through increased availability of milk, improved body condition and reduced energy demands would be offset by an increase in MCF-incidence. With the development of an effective vaccine, however, this alternative strategy might become optimal. The overall conclusion we draw therefore is that, despite the substantial costs incurred each year avoiding MCF, the partial protection afforded by the novel vaccine strategy is not sufficient to warrant a wholesale change in disease avoidance strategy. Nonetheless, even the partial protection provided by this vaccine could be of value to protect animals that cannot be moved, for example where some of the herd remain at the boma to provide milk or where land-use changes make traditional disease avoidance difficult. Furthermore, the vaccine may offer a feasible solution to some of the current land-use challenges and conflicts, providing a degree of protection to valuable livestock where avoidance strategies are not possible, but with less risk of precipitating the potentially damaging environmental consequences, such as overgrazing of highly nutritious seasonal pastures, that might result if herd owners decide they no longer need to avoid wildebeest.