3 resultados para MIXED MODELS

em Glasgow Theses Service


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current practice for analysing functional neuroimaging data is to average the brain signals recorded at multiple sensors or channels on the scalp over time across hundreds of trials or replicates to eliminate noise and enhance the underlying signal of interest. These studies recording brain signals non-invasively using functional neuroimaging techniques such as electroencephalography (EEG) and magnetoencephalography (MEG) generate complex, high dimensional and noisy data for many subjects at a number of replicates. Single replicate (or single trial) analysis of neuroimaging data have gained focus as they are advantageous to study the features of the signals at each replicate without averaging out important features in the data that the current methods employ. The research here is conducted to systematically develop flexible regression mixed models for single trial analysis of specific brain activities using examples from EEG and MEG to illustrate the models. This thesis follows three specific themes: i) artefact correction to estimate the `brain' signal which is of interest, ii) characterisation of the signals to reduce their dimensions, and iii) model fitting for single trials after accounting for variations between subjects and within subjects (between replicates). The models are developed to establish evidence of two specific neurological phenomena - entrainment of brain signals to an $\alpha$ band of frequencies (8-12Hz) and dipolar brain activation in the same $\alpha$ frequency band in an EEG experiment and a MEG study, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endemic zoonotic diseases remain a serious but poorly recognised problem in affected communities in developing countries. Despite the overall burden of zoonoses on human and animal health, information about their impacts in endemic settings is lacking and most of these diseases are continuously being neglected. The non-specific clinical presentation of these diseases has been identified as a major challenge in their identification (even with good laboratory diagnosis), and control. The signs and symptoms in animals and humans respectively, are easily confused with other non-zoonotic diseases, leading to widespread misdiagnosis in areas where diagnostic capacity is limited. The communities that are mostly affected by these diseases live in close proximity with their animals which they depend on for livelihood, which further complicates the understanding of the epidemiology of zoonoses. This thesis reviewed the pattern of reporting of zoonotic pathogens that cause febrile illness in malaria endemic countries, and evaluates the recognition of animal associations among other risk factors in the transmission and management of zoonoses. The findings of the review chapter were further investigated through a laboratory study of risk factors for bovine leptospirosis, and exposure patterns of livestock coxiellosis in the subsequent chapters. A review was undertaken on 840 articles that were part of a bigger review of zoonotic pathogens that cause human fever. The review process involves three main steps: filtering and reference classification, identification of abstracts that describe risk factors, and data extraction and summary analysis of data. Abstracts of the 840 references were transferred into a Microsoft excel spread sheet, where several subsets of abstracts were generated using excel filters and text searches to classify the content of each abstract. Data was then extracted and summarised to describe geographical patterns of the pathogens reported, and determine the frequency animal related risk factors were considered among studies that investigated risk factors for zoonotic pathogen transmission. Subsequently, a seroprevalence study of bovine leptospirosis in northern Tanzania was undertaken in the second chapter of this thesis. The study involved screening of serum samples, which were obtained from an abattoir survey and cross-sectional study (Bacterial Zoonoses Project), for antibodies against Leptospira serovar Hardjo. The data were analysed using generalised linear mixed models (GLMMs), to identify risk factors for cattle infection. The final chapter was the analysis of Q fever data, which were also obtained from the Bacterial Zoonoses Project, to determine exposure patterns across livestock species using generalized linear mixed models (GLMMs). Leptospira spp. (10.8%, 90/840) and Rickettsia spp. (10.7%, 86/840) were identified as the most frequently reported zoonotic pathogens that cause febrile illness, while Rabies virus (0.4%, 3/840) and Francisella spp. (0.1%, 1/840) were least reported, across malaria endemic countries. The majority of the pathogens were reported in Asia, and the frequency of reporting seems to be higher in areas where outbreaks are mostly reported. It was also observed that animal related risk factors are not often considered among other risk factors for zoonotic pathogens that cause human fever in malaria endemic countries. The seroprevalence study indicated that Leptospira serovar Hardjo is widespread in cattle population in northern Tanzania, and animal husbandry systems and age are the two most important risk factors that influence seroprevalence. Cattle in the pastoral systems and adult cattle were significantly more likely to be seropositive compared to non-pastoral and young animals respectively, while there was no significant effect of cattle breed or sex. Exposure patterns of Coxiella burnetii appear different for each livestock species. While most risk factors were identified for goats (such as animal husbandry systems, age and sex) and sheep (animal husbandry systems and sex), there were none for cattle. In addition, there was no evidence of a significant influence of mixed livestock-keeping on animal coxiellosis. Zoonotic agents that cause human fever are common in developing countries. The role of animals in the transmission of zoonotic pathogens that cause febrile illness is not fully recognised and appreciated. Since Leptospira spp. and C. burnetii are among the most frequently reported pathogens that cause human fever across malaria endemic countries, and are also prevalent in livestock population, control and preventive measures that recognise animals as source of infection would be very important especially in livestock-keeping communities where people live in close proximity with their animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.