2 resultados para Living Planet Index

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

South Asians migrating to the Western world have a 3 to 5-fold higher risk of developing type 2 diabetes and double the risk of cardiovascular disease (CVD) than the background population of White European descent, without exhibiting a proportional higher prevalence of conventional cardiometabolic risk factors. Notably, women of South Asian descent are more likely to be diagnosed with type 2 diabetes as they grow older compared with South Asian men and, in addition, they have lost the cardio-protective effects of being females. Despite South Asian women in Western countries being a high risk group for developing future type 2 diabetes and CVD, they have been largely overlooked. The aims of this thesis were to compare lifestyle factors, body composition and cardiometabolic risk factors in healthy South Asian and European women who reside in Scotland, to examine whether ethnicity modifies the associations between modifiable environmental factors and cardiometabolic risks and to assess whether vascular reactivity is altered by ethnicity or other conventional and novel CVD risks. I conducted a cross-sectional study and recruited 92 women of South Asian and 87 women of White European descent without diagnosed diabetes or CVD. Women on hormone replacement therapy or hormonal contraceptives were excluded too. Age and body mass index (BMI) did not differ between the two ethnic groups. Physical activity was assessed and with self-reported questionnaires and objectively with the use of accelerometers. Cardiorespiratory fitness was quantified with the predicted maximal oxygen uptake (VO2 max) during a submaximal test (Chester step test). Body composition was assessed with skinfolds measured at seven body sites, five body circumferences, measurement of abdominal subcutaneous (SAT) and visceral adipose tissue (VAT) with the use of magnetic resonance imaging (MRI) and liver fat with the use MR spectroscopy. Dietary density was assessed with food frequency questionnaires. Vascular response was assessed by measuring the response to acetylcholine and sodium nitroprusside with the use of Laser Doppler Imaging with Iontophoresis (LDI-ION) and the response to shear stress with the use of Peripheral Arterial Tonometry (EndoPAT). The South Asian women exhibited a metabolic profile consistent with the insulin resistant phenotype, characterised by greater levels of fasting insulin, lower levels of high density lipoprotein (HDL) and higher levels of triglycerides (TG) compared with their European counterparts. In addition, the South Asians had greater levels of glycated haemoglobin (HbA1c) for any given level of fasting glucose. The South Asian women engaged less time weekly with moderate to vigorous physical activity (MVPA) and had lower levels of cardiorespiratory fitness for any given level of physical activity than the women of White descent. In addition, they accumulated more fat centrally for any given BMI. Notably, the South Asians had equivalent SAT with the European women but greater VAT and hepatic fat for any given BMI. Dietary density did not differ among the groups. Increasing central adiposity had the largest effect on insulin resistance in both ethic groups compared with physical inactivity or decreased cardiorespiratory fitness. Interestingly, ethnicity modified the association between central adiposity and insulin resistance index with a similar increase in central adiposity having a substantially larger effect on insulin resistance index in the South Asian women than in the Europeans. I subsequently examined whether ethnic specific thresholds are required for lifestyle modifications and demonstrated that South Asian women need to engage with MVPA for around 195 min.week-1 in order to equate their cardiometabolic risk with that of the Europeans exercising 150 min.week-1. In addition, lower thresholds of abdominal adiposity and BMI should apply for the South Asians compared with the conventional thresholds. Although the South Asians displayed an adverse metabolic profile, vascular reactivity measured with both methods did not differ among the two groups. An additional finding was that menopausal women with hot flushing of both ethnic groups showed a paradoxical vascular profile with enhanced skin perfusion (measured with LDI-ION) but decreased reactive hyperaemia index (measured with EndoPAT) compared with asymptomatic menopausal women. The latter association was independent of conventional CVD risk factors. To conclude, South Asian women without overt disease who live in Scotland display an adverse metabolic profile with steeper associations between lifestyle risk factors and adverse cardiometabolic outcomes compared with their White counterparts. Further work in exploring ethnic specific thresholds in lifestyle interventions or in disease diagnosis is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Re-creating and understanding the origin of life represents one of the major challenges facing the scientific community. We will never know exactly how life started on planet Earth, however, we can reconstruct the most likely chemical pathways that could have contributed to the formation of the first living systems. Traditionally, prebiotic chemistry has investigated the formation of modern life’s precursors and their self-organisation under very specific conditions thought to be ‘plausible’. So far, this approach has failed to produce a living system from the bottom-up. In the work presented herein, two different approaches are employed to explore the transition from inanimate to living matter. The development of microfluidic technology during the last decades has changed the way traditional chemical and biological experiments are performed. Microfluidics allows the handling of low volumes of reagents with very precise control. The use of micro-droplets generated within microfluidic devices is of particular interest to the field of Origins of Life and Artificial Life. Whilst many efforts have been made aiming to construct cell-like compartments from modern biological constituents, these are usually very difficult to handle. However, microdroplets can be easily generated and manipulated at kHz rates, making it suitable for high-throughput experimentation and analysis of compartmentalised chemical reactions. Therefore, we decided to develop a microfluidic device capable of manipulating microdroplets in such a way that they could be efficiently mixed, split and sorted within iterative cycles. Since no microfluidic technology had been developed before in the Cronin Group, the first chapter of this thesis describes the soft lithographic methods and techniques developed to fabricate microfluidic devices. Also, special attention is placed on the generation of water-in-oil microdroplets, and the subsequent modules required for the manipulation of the droplets such as: droplet fusers, splitters, sorters and single/multi-layer micromechanical valves. Whilst the first part of this thesis describes the development of a microfluidic platform to assist chemical evolution, finding a compatible set of chemical building blocks capable of reacting to form complex molecules with endowed replicating or catalytic activity was challenging. Abstract 10 Hence, the second part of this thesis focuses on potential chemistry that will ultimately possess the properties mentioned above. A special focus is placed on the formation of peptide bonds from unactivated amino acids, despite being one of the greatest challenges in prebiotic chemistry. As opposed to classic prebiotic experiments, in which a specific set of conditions is studied to fit a particular hypothesis, we took a different approach: we explored the effects of several parameters at once on a model polymerisation reaction, without constraints on hypotheses on the nature of optimum conditions or plausibility. This was facilitated by development of a new high-throughput automated platform, allowing the exploration of a much larger number of parameters. This led us to discover that peptide bond formation is less challenging than previously imagined. Having established the right set of conditions under which peptide bond formation was enhanced, we then explored the co-oligomerisation between different amino acids, aiming for the formation of heteropeptides with different structure or function. Finally, we studied the effect of various environmental conditions (rate of evaporation, presence of salts or minerals) in the final product distribution of our oligomeric products.