5 resultados para Linear factor model

em Glasgow Theses Service


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypertension is a major risk factor for cardiovascular disease and mortality, and a growing global public health concern, with up to one-third of the world’s population affected. Despite the vast amount of evidence for the benefits of blood pressure (BP) lowering accumulated to date, elevated BP is still the leading risk factor for disease and disability worldwide. It is well established that hypertension and BP are common complex traits, where multiple genetic and environmental factors contribute to BP variation. Furthermore, family and twin studies confirmed the genetic component of BP, with a heritability estimate in the range of 30-50%. Contemporary genomic tools enabling the genotyping of millions of genetic variants across the human genome in an efficient, reliable, and cost-effective manner, has transformed hypertension genetics research. This is accompanied by the presence of international consortia that have offered unprecedentedly large sample sizes for genome-wide association studies (GWASs). While GWAS for hypertension and BP have identified more than 60 loci, variants in these loci are associated with modest effects on BP and in aggregate can explain less than 3% of the variance in BP. The aims of this thesis are to study the genetic and environmental factors that influence BP and hypertension traits in the Scottish population, by performing several genetic epidemiological analyses. In the first part of this thesis, it aims to study the burden of hypertension in the Scottish population, along with assessing the familial aggregation and heritialbity of BP and hypertension traits. In the second part, it aims to validate the association of common SNPs reported in the large GWAS and to estimate the variance explained by these variants. In this thesis, comprehensive genetic epidemiology analyses were performed on Generation Scotland: Scottish Family Health Study (GS:SFHS), one of the largest population-based family design studies. The availability of clinical, biological samples, self-reported information, and medical records for study participants has allowed several assessments to be performed to evaluate factors that influence BP variation in the Scottish population. Of the 20,753 subjects genotyped in the study, a total of 18,470 individuals (grouped into 7,025 extended families) passed the stringent quality control (QC) criteria and were available for all subsequent analysis. Based on the BP-lowering treatment exposure sources, subjects were further classified into two groups. First, subjects with both a self-reported medications (SRMs) history and electronic-prescription records (EPRs; n =12,347); second, all the subjects with at least one medication history source (n =18,470). In the first group, the analysis showed a good concordance between SRMs and EPRs (kappa =71%), indicating that SRMs can be used as a surrogate to assess the exposure to BP-lowering medication in GS:SFHS participants. Although both sources suffer from some limitations, SRMs can be considered the best available source to estimate the drug exposure history in those without EPRs. The prevalence of hypertension was 40.8% with higher prevalence in men (46.3%) compared to women (35.8%). The prevalence of awareness, treatment and controlled hypertension as defined by the study definition were 25.3%, 31.2%, and 54.3%, respectively. These findings are lower than similar reported studies in other populations, with the exception of controlled hypertension prevalence, which can be considered better than other populations. Odds of hypertension were higher in men, obese or overweight individuals, people with a parental history of hypertension, and those living in the most deprived area of Scotland. On the other hand, deprivation was associated with higher odds of treatment, awareness and controlled hypertension, suggesting that people living in the most deprived area may have been receiving better quality of care, or have higher comorbidity levels requiring greater engagement with doctors. These findings highlight the need for further work to improve hypertension management in Scotland. The family design of GS:SFHS has allowed family-based analysis to be performed to assess the familial aggregation and heritability of BP and hypertension traits. The familial correlation of BP traits ranged from 0.07 to 0.20, and from 0.18 to 0.34 for parent-offspring pairs and sibling pairs, respectively. A higher correlation of BP traits was observed among first-degree relatives than other types of relative pairs. A variance-component model that was adjusted for sex, body mass index (BMI), age, and age-squared was used to estimate heritability of BP traits, which ranged from 24% to 32% with pulse pressure (PP) having the lowest estimates. The genetic correlation between BP traits showed a high correlation between systolic (SBP), diastolic (DBP) and mean arterial pressure (MAP) (G: 81% to 94%), but lower correlations with PP (G: 22% to 78%). The sibling recurrence risk ratio (λS) for hypertension and treatment were calculated as 1.60 and 2.04 respectively. These findings confirm the genetic components of BP traits in GS:SFHS, and justify further work to investigate genetic determinants of BP. Genetic variants reported in the recent large GWAS of BP traits were selected for genotyping in GS:SFHS using a custom designed TaqMan® OpenArray®. The genotyping plate included 44 single nucleotide polymorphisms (SNPs) that have been previously reported to be associated with BP or hypertension at genome-wide significance level. A linear mixed model that is adjusted for age, age-squared, sex, and BMI was used to test for the association between the genetic variants and BP traits. Of the 43 variants that passed the QC, 11 variants showed statistically significant association with at least one BP trait. The phenotypic variance explained by these variant for the four BP traits were 1.4%, 1.5%, 1.6%, and 0.8% for SBP, DBP, MAP, and PP, respectively. The association of genetic risk score (GRS) that were constructed from selected variants has showed a positive association with BP level and hypertension prevalence, with an average effect of one mmHg increase with each 0.80 unit increases in the GRS across the different BP traits. The impact of BP-lowering medication on the genetic association study for BP traits has been established, with typical practice of adding a fixed value (i.e. 15/10 mmHg) to the measured BP values to adjust for BP treatment. Using the subset of participants with the two treatment exposure sources (i.e. SRMs and EPRs), the influence of using either source to justify the addition of fixed values in SNP association signal was analysed. BP phenotypes derived from EPRs were considered the true phenotypes, and those derived from SRMs were considered less accurate, with some phenotypic noise. Comparing SNPs association signals between the four BP traits in the two model derived from the different adjustments showed that MAP was the least impacted by the phenotypic noise. This was suggested by identifying the same overlapped significant SNPs for the two models in the case of MAP, while other BP traits had some discrepancy between the two sources

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed timevarying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible realtime term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed time-varying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible real-time term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Ph.D. thesis contains 4 essays in mathematical finance with a focus on pricing Asian option (Chapter 4), pricing futures and futures option (Chapter 5 and Chapter 6) and time dependent volatility in futures option (Chapter 7). In Chapter 4, the applicability of the Albrecher et al.(2005)'s comonotonicity approach was investigated in the context of various benchmark models for equities and com- modities. Instead of classical Levy models as in Albrecher et al.(2005), the focus is the Heston stochastic volatility model, the constant elasticity of variance (CEV) model and the Schwartz (1997) two-factor model. It is shown that the method delivers rather tight upper bounds for the prices of Asian Options in these models and as a by-product delivers super-hedging strategies which can be easily implemented. In Chapter 5, two types of three-factor models were studied to give the value of com- modities futures contracts, which allow volatility to be stochastic. Both these two models have closed-form solutions for futures contracts price. However, it is shown that Model 2 is better than Model 1 theoretically and also performs very well empiri- cally. Moreover, Model 2 can easily be implemented in practice. In comparison to the Schwartz (1997) two-factor model, it is shown that Model 2 has its unique advantages; hence, it is also a good choice to price the value of commodity futures contracts. Fur- thermore, if these two models are used at the same time, a more accurate price for commodity futures contracts can be obtained in most situations. In Chapter 6, the applicability of the asymptotic approach developed in Fouque et al.(2000b) was investigated for pricing commodity futures options in a Schwartz (1997) multi-factor model, featuring both stochastic convenience yield and stochastic volatility. It is shown that the zero-order term in the expansion coincides with the Schwartz (1997) two-factor term, with averaged volatility, and an explicit expression for the first-order correction term is provided. With empirical data from the natural gas futures market, it is also demonstrated that a significantly better calibration can be achieved by using the correction term as compared to the standard Schwartz (1997) two-factor expression, at virtually no extra effort. In Chapter 7, a new pricing formula is derived for futures options in the Schwartz (1997) two-factor model with time dependent spot volatility. The pricing formula can also be used to find the result of the time dependent spot volatility with futures options prices in the market. Furthermore, the limitations of the method that is used to find the time dependent spot volatility will be explained, and it is also shown how to make sure of its accuracy.