3 resultados para Implant surface

em Glasgow Theses Service


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orthopaedic infections can be polymicrobial existing as a microbiome. Infections often incorporate staphylococcal species, including Staphylococcus aureus. Such infections can lead to life threatening illness and implant failure. Furthermore, biofilm formation on the implant surface can occur, increasing pathogenicity, exacerbating antibiotic resistance and altering antimicrobial mechanism of action. Bacteria change dramatically during the transition to a biofilm growth state: phenotypically; transcriptionally; and metabolically, highlighting the need for research into molecular mechanisms involved in biofilm formation. Metabolomics can provide a tool to analyse metabolic changes which are directly related to the expressed phenotype. Here, we aimed to provide greater understanding of orthopaedic infection caused by S. aureus and biofilm formation on the implant surface. Through metagenome analysis by employing: implant material extraction; DNA extraction; microbial enrichment; and whole genome sequencing, we present a microbiome study of the infected prosthesis to resolve the causative species of orthopaedic hip infection. Results highlight the presence of S. aureus as a primary cause of orthopaedic infection along with Enterococcus faecium and the presence of secondary pathogen Clostridium difficile. Although results were hindered by the presence of host contaminating DNA even after microbial enrichment, conclusions could be made over the potential increased pathogenicity caused by the presence of a secondary pathogen and highlight method and sample preparation considerations when undertaking such a study. Following this finding, studies were focused on an orthopaedic clinical isolate of S. aureus and a metabolome extraction method for staphylococcal biofilms was developed using cell lysis through bead beating and solvent metabolome extraction. The method was found to be reproducible when coupled with liquid chromatography-mass spectrometry (LC-MS) and bioinformatics, allowing for the detection of significant changes in metabolism between planktonic and biofilm cultures to be identified and drug mechanism of actions (MOA) to be studied. Metabolomics results highlight significant changes in a number of metabolic pathways including arginine biosynthesis and purine metabolism between the two cell populations, evidence of S. aureus responding to their changing environment, including oxygen availability and a decrease in pH. Focused investigations on purine metabolism looking for biofilm modulation effects were carried out. Modulation of the S. aureus biofilm phenotype was observed through the addition of exogenous metabolites. Inosine increased biofilm biomass while formycin B, an inosine analogue, showed a dispersal effect and a potential synergistic effect in biofilm dispersal when coupled with gentamycin. Changes in metabolism between planktonic cells and biofilms highlight the requirement for antimicrobial testing to be carried out against planktonic cells and biofilms. Untargeted metabolomics was used to study the MOA of triclosan in S. aureus. The triclosan target and MOA in bacteria has already been characterised, however, questions remain over its effects in bacteria. Although the use of triclosan has come under increasing speculation, its full effects are still largely unknown. Results show that triclosan can induce a cascade of detrimental events in the cell metabolism including significant changes in amino acid metabolism, affecting planktonic cells and biofilms. Results and conclusions provide greater understanding of orthopaedic infections and specifically focus on the S. aureus biofilm, confirming S. aureus as a primary cause of orthopaedic infection and using metabolomic analysis to look at the changing state of metabolism between the different growth states. Metabolomics is a valuable tool for biofilm and drug MOA studies, helping understand orthopaedic infection and implant failure, providing crucial insight into the biochemistry of bacteria for the potential for inferences to be gained, such as the MOA of antimicrobials and the identification of novel metabolic drug targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes two separate projects. The first is a theoretical and experimental investigation of surface acoustic wave streaming in microfluidics. The second is the development of a novel acoustic glucose sensor. A separate abstract is given for each here. Optimization of acoustic streaming in microfluidic channels by SAWs Surface Acoustic Waves, (SAWs) actuated on flat piezoelectric substrates constitute a convenient and versatile tool for microfluidic manipulation due to the easy and versatile interfacing with microfluidic droplets and channels. The acoustic streaming effect can be exploited to drive fast streaming and pumping of fluids in microchannels and droplets (Shilton et al. 2014; Schmid et al. 2011), as well as size dependant sorting of particles in centrifugal flows and vortices (Franke et al. 2009; Rogers et al. 2010). Although the theory describing acoustic streaming by SAWs is well understood, very little attention has been paid to the optimisation of SAW streaming by the correct selection of frequency. In this thesis a finite element simulation of the fluid streaming in a microfluidic chamber due to a SAW beam was constructed and verified against micro-PIV measurements of the fluid flow in a fabricated device. It was found that there is an optimum frequency that generates the fastest streaming dependent on the height and width of the chamber. It is hoped this will serve as a design tool for those who want to optimally match SAW frequency with a particular microfluidic design. An acoustic glucose sensor Diabetes mellitus is a disease characterised by an inability to properly regulate blood glucose levels. In order to keep glucose levels under control some diabetics require regular injections of insulin. Continuous monitoring of glucose has been demonstrated to improve the management of diabetes (Zick et al. 2007; Heinemann & DeVries 2014), however there is a low patient uptake of continuous glucose monitoring systems due to the invasive nature of the current technology (Ramchandani et al. 2011). In this thesis a novel way of monitoring glucose levels is proposed which would use ultrasonic waves to ‘read’ a subcutaneous glucose sensitive-implant, which is only minimally invasive. The implant is an acoustic analogy of a Bragg stack with a ‘defect’ layer that acts as the sensing layer. A numerical study was performed on how the physical changes in the sensing layer can be deduced by monitoring the reflection amplitude spectrum of ultrasonic waves reflected from the implant. Coupled modes between the skin and the sensing layer were found to be a potential source of error and drift in the measurement. It was found that by increasing the number of layers in the stack that this could be minimized. A laboratory proof of concept system was developed using a glucose sensitive hydrogel as the sensing layer. It was possible to monitor the changing thickness and speed of sound of the hydrogel due to physiological relevant changes in glucose concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(aryl-ether-ether-ketone) (PEEK) is a semi crystalline polymer which exhibits properties that make it an attractive choice for use as an implant material. It displays natural radiolucency, and MRI compatibility, as well as good chemical and sterilization resistance, both of which make it of particular interest in orthopaedic implants. However, PEEK has demonstrated poor cellular adhesion both in vitro and in vivo. This is problematic as implant surfaces that do not develop a layer of adhesive cells are at risk of undergoing fibrous encapsulation, which in turn leads to lack of a strong interface between the implant device and the patient tissue, which can in turn lead to failure of the implant and revision surgery . As incorporating nanotopography into a polymer surface has been demonstrated to be able to direct the differentiation behaviour of stem cells, a possible solution to PEEKs underlying issues with poor cellular response would be to incorporate specific nanoscale topography into the material surface through injection moulding, and then analysing if this is a viable method for addressing PEEKs issues with cellular response. In addition to nanoscale topography, the experimental PEEK surfaces were treated with oxygen plasma to address the underlying cytophobicity of the material. As this type of treatment has been documented to be capable of etching the PEEK surface, experiments were carried out to quantify the effect of this treatment, both on the ability of cells to adhere to the PEEK surface, as well as the effect it has upon the nanotopography present at the PEEK surface. The results demonstrated that there were a range of plasma treatments which would significantly improve the ability of cells to adhere to the PEEK surface without causing unacceptable damage to the nanotopography. Three different types of cells with osteogenic capacity were tested with the PEEK surfaces to gauge the ability of the topography to alter their behaviour: SAOS-2, osteoprogenitors and 271+ MSCs. Due to PEEKs material properties (it is non transparent, exhibits birefringence and is strongly autofluorescent) a number of histological techniques were used to investigate a number of different stages that take place in osteogenesis. The different cell types did display slightly different responses to the topographies. The SAOS-2 cells cultured on surfaces that had been plasma treated for 2 minutes at 200W had statistically significantly higher levels of von Kossa staining on the NSQ surface compared to the planar surface, and the same experiment employing alizarin red staining, showed a statistically significantly lower level of staining on the SQ surface compared to the planar surface. Using primary osteoprogenitor cells designed to look into if whether or not the presence of nanotopography effected the osteogenic response of these cells, we saw a lack of statistically significant difference produced by the surfaces investigated. By utilising HRP based immunostaining, we were able to investigate, in a quantitative fashion, the production of the two osteogenic markers osteopontin and osteocalcin by cells. When stained for osteocalcin, the SQ nanotopography had total percentage of the surface with stained material, average area and average perimeter all statistically significantly lower than the planar surface. For the cells that were stained for osteopontin, the SQ nanotopgraphy had a total percentage of the surface with stained material, average area and average perimeter all highly statistically significantly lower than those of the planar surface. Additionally, for this marker the NSQ nanotopography had average areas and average perimeters that were highly significantly higher than those of the planar surface. There were no significant differences for any of the values investigated for the 271+ MSC’s When plasma treatment was varied, the SAOS-2 cells demonstrated an overall trend i.e. increasing the energy of plasma treatment in turn leads to an increase in the overall percentage of staining. A similar experiment employing stem cells isolated from human bone marrow instead of SAOS-2 cells showed that for polycarbonate surfaces , used as a control, mineralization is statistically significantly higher on the NSQ nanopattern compared to the planar surface, whereas on the PEEK surfaces we observe the opposite trend i.e. the NSQ nanotopography having a statistically significantly lower amount of mineralization compared to the planar surface at the 200W 2min and 30W 1min plasma treatments. The standout trend from the PEEK results in this experiment was that the statistically significant differences on the PEEK substrates were clustered around the lower energy plasma treatments, which could suggest that the plasma treatment disrupted a function of the nanotopograhy which is why, as the energy increases, there are less statistically significant differences between the NSQ nanotopography and the Planar surface This thesis documents the response of a number of different types of cells to specific nanoscale topographies incorporated into the PEEK surface which had been treated with oxygen plasma. It outlines the development of a number of histological methods which measure different aspects of osteogenesis, and were selected to both work with PEEK, and produce quantitative results through the use of Cell Profiler. The methods that have been employed in this body of work would be of interest to other researchers working with this material, as well as those working with similarly autofluorescent materials.