2 resultados para IODIDE

em Glasgow Theses Service


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amphidinolides are marine macrolides extracted from dinoflagellates of the genus Amphidinium. To date, 37 amphidinolides have been isolated and identified, most of them possessing cytotoxicity against human cancer cell lines. Among these, amphidinolides C, F, C2 and C3 represent synthetic targets of interest owing to their scarcity, structural complexity and promising biological activities. This thesis describes the work realised towards the total synthesis of amphidinolides C and F, with a focus on the different strategies investigated and the key fragments synthesised. In the first approach, the C18−C29 fragment of amphidinolide F was prepared using an intramolecular etherification of an epoxide under acidic catalysis to produce the 2,5-trans-disubstituted tetrahydrofuran ring featured in the natural product. Unfortunately, dithiane alkylation with the C1−C17 iodide counterpart generated the desired coupling product in low yield. A second approach proposing to build the C17−C18 bond by a silicon-tethered RCM proved unsuccessful, because the requisite diene could not be obtained. It was then envisioned to form the C18−C19 bond by displacement of a triflate with an alkyne and install the ketone at C18 by a protoborylation/oxidation sequence. To this end, the C19−C29 triflate precursor was synthesised. Displeasingly, the C1−C18 alkyne counterpart (work by Dr Filippo Romiti) could not be prepared and coupling of the two fragments was not attempted. In the latest approach, the C10−C29 fragment of amphidinolide F was obtained employing a boron-mediated aldol condensation and a dithiane alkylation to form the C13−C14 and C18−C19 bonds. Several endgame strategies were examined including the successful Yamaguchi esterification of the C13-epi C10−C29 fragment and the C1−C9 acid. A challenging Stille crosscoupling was then effected to close the macrocycle but only yielded the desired macrolactone in trace amounts after global desilylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the synthesis and characterisation of novel conjugated organic materials with optoelectronic application. The first chapter provides an introduction about organic semiconductors and in particular about their working principle from a physical and chemical point of view. An overview of the most common types of solar cells is provided, including examples of some of the best performing materials. The second chapter describes the synthesis of a new library of flavin derivatives as potential active materials for optoelectronic applications. Flavins are natural redox-active molecules, which show potential application in optoelectronics, thanks to their stability and versatility. FPF-Flavins, for instance, could be used either as acceptor units in push-pull polyconjugated systems or as acceptor unit in dyes for DSSCs. In the same chapter a first attempt of synthesising bis-flavins to be used as N-type semiconductors in BHJ devices is described. The third chapter describes the successful synthesis and characterization of a series of conjugated organic molecules based on the benzothiadiazole moiety. Among these, three molecules containing ferrocene as donor unit were tested as sensitizers for DSSCs, reporting a PCE of 0.3% as the best result. Further studies indicated a significant problem of charge recombination which limits the performance. A near-infrared absorbing push-pull polymer, based on BbT as acceptor unit, was also synthesised and tested in BHJ devices as P-type semiconductor in blend with PC71BM, showing a VOC of 0.71 V. Finally, the last chapter describes the synthesis of several tetrathiafulvalene derivatives in order to explore this moiety as donor unit in dyes for DSSCs and as HTM for perovskite-based solar cells. In particular, two very simple dyes were synthesised and implemented in DSSCs reporting a PCE 0.2% and 0.4%, respectively. The low efficiency was associated to the tendency to aggregate at the solid state, with the absorption shifting from the visible to the infrared range. A conjugated molecule, containing a DPP core, was also synthesised and tested as HTM for perovskite solar cells. The best reported PCE of 7.7% was obtained without any additives. A case study about dehalogenation and “halogen dance” in TTF iodide is also presented.