3 resultados para INFLAMMATORY CYTOKINE PRODUCTION
em Glasgow Theses Service
Resumo:
Background: Rheumatoid arthritis (RA) is a chronic inflammatory arthritis that causes significant morbidity and mortality and has no cure. Although early treatment strategies and biologic therapies such as TNFα blocking antibodies have revolutionised treatment, there still remains considerable unmet need. JAK kinase inhibitors, which target multiple inflammatory cytokines, have shown efficacy in treating RA although their exact mechanism of action remains to be determined. Stratified medicine promises to deliver the right drug to the right patient at the right time by using predictive ‘omic biomarkers discovered using bioinformatic and “Big Data” techniques. Therefore, knowledge across the realms of clinical rheumatology, applied immunology, bioinformatics and data science is required to realise this goal. Aim: To use bioinformatic tools to analyse the transcriptome of CD14 macrophages derived from patients with inflammatory arthritis and define a JAK/STAT signature. Thereafter to investigate the role of JAK inhibition on inflammatory cytokine production in a macrophage cell contact activation assay. Finally, to investigate JAK inhibition, following RA synovial fluid stimulation of monocytes. Methods and Results: Using bioinformatic software such as limma from the Bioconductor repository, I determined that there was a JAK/STAT signature in synovial CD14 macrophages from patients with RA and this differed from psoriatic arthritis samples. JAK inhibition using a JAK1/3 inhibitor tofacitinib reduced TNFα production when macrophages were cell contact activated by cytokine stimulated CD4 T-cells. Other pro-inflammatory cytokines such as IL-6 and chemokines such as IP-10 were also reduced. RA synovial fluid failed to stimulate monocytes to phosphorylate STAT1, 3 or 6 but CD4 T-cells activated STAT3 with this stimulus. RNA sequencing of synovial fluid stimulated CD4 T-cells showed an upregulation of SOCS3, BCL6 and SBNO2, a gene associated with RA but with unknown function and tofacitinib reversed this. Conclusion: These studies demonstrate that tofacitinib is effective at reducing inflammatory mediator production in a macrophage cell contact assay and also affects soluble factor mediated stimulation of CD4 T-cells. This suggests that the effectiveness of JAK inhibition is due to inhibition of multiple cytokine pathways such as IL-6, IL-15 and interferon. RNA sequencing is a useful tool to identify non-coding RNA transcripts that are associated with synovial fluid stimulation and JAK inhibition but these require further validation. SBNO2, a gene that is associated with RA, may be biomarker of tofacitinib treatment but requires further investigation and validation in wider disease cohorts.
Resumo:
Spondyloarthropathies (or Spondyloarthritides; SpAs) are a group of heterogeneous but genetically related inflammatory disorders in which ankylosing spondylitis (AS) is considered the prototypic form. Among the genes associated with AS, HLA-B27 allele has the strongest association although the cause is still not clear. Rats transgenic for the human HLA-B27 gene (B27 rats) develop a systemic inflammation mirroring the human SpA symptoms and thus provide a useful model to study the contribution of this MHC class I molecule in the disease development. Of particular interest was the observation of absence of arthritis in B27 rats grown in germ-free conditions and a recent theory suggests that microbial dysbiosis and gut inflammation might play a key role in initiating the HLA-B27-associated diseases. Studies in our laboratory have previously demonstrated that HLA-B27 expression alters the development of the myeloid compartment within the bone marrow (BM) in B27 rat and causes loss of a specific dendritic cell (DC) population involved in self-tolerance mechanisms within the gut. The aim of this thesis was to further analyse the myeloid compartment in B27 rats with a particular focus on the osteoclast progenitors and the bone phenotype and to link this to the gut inflammation. In addition, translational studies analysed peripheral monocyte/pre-osteoclasts in AS patients and teased apart the role of cytokines in in vitro human osteoclast differentiation. To understand the dynamics of the myeloid/monocyte compartment within the B27-associated inflammation, monocytes within the bloodstream and BM of B27 rats were characterised via flow cytometry and their ability to differentiate into osteoclast was assessed in vitro. Moreover, an antibiotic regime was used to reduce the B27 ileitis and to evaluate whether this could affect the migration, the phenotype, and the osteoclastogenic potential of B27 monocytes. B27 animals display a systemic and central increase of “inflammatory” CD43low MOs, which are the main contributors to osteoclastogenesis in vitro. Antibiotic treatment reduced ileitis and also reverted the B27 monocyte phenotype. This was also associated with the reduction of the previous described TNFα-enhancement of osteoclast differentiation from B27 BM precursors. These evidences support the idea that in genetically susceptible individuals inflammation in the gut might influence the myeloid compartment within the BM; in other terms, pre-emptively educate precursor cells to acquire specific phenotype end functions after being recruited into the tissue. This might explain the enhanced differentiation of osteoclast from B27 BM progenitors and thus the HLA-B27-associated bone loss. The data shown in this thesis suggest a link between the immunity within the gut and BM haematopoiesis. This provides an attractive and novel research prospective that could help not only to increase the understanding of the HLA-B27-associated aetiopathogenesis but also to unravel the cellular crosstalk that allows the mucosal immunity to program central cell differentiation. Human translational studies on monocyte subsets, cytokines and cytokine network in AS osteoclastogenesis evidenced altered osteoclast differentiation in the presence of IL-22 although no differences in the phenotype and functions of circulating CD14+ monocytes were observed. In addition, studies on the role of TNFα and TNFRs showed a dual role of this inflammatory cytokine in the human OC differentiation. In particular, the activation of TNFR1 in monocytes in early osteoclastogenesis inhibits OC differentiation while TNFα-biasing for TNFR2 on osteoclast precursors mediates the osteoclastogenic effect. Whether similar mechanisms are involved in the TNFα-mediated joint destruction in human rheumatic diseases needs further investigations. This could contribute to the development of novel and more specific anti-TNFα agents for the treatment of bone erosion. In conclusion, taken together my studies support the idea of a crosstalk between the periphery and the central system during the inflammatory response and provide new insights to the mechanisms behind the enhancement of osteoclastogenesis in B27-associated disorders.
Resumo:
During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.