3 resultados para Hospital and laboratory sewage
em Glasgow Theses Service
Resumo:
Introduction Prediction of soft tissue changes following orthognathic surgery has been frequently attempted in the past decades. It has gradually progressed from the classic “cut and paste” of photographs to the computer assisted 2D surgical prediction planning; and finally, comprehensive 3D surgical planning was introduced to help surgeons and patients to decide on the magnitude and direction of surgical movements as well as the type of surgery to be considered for the correction of facial dysmorphology. A wealth of experience was gained and numerous published literature is available which has augmented the knowledge of facial soft tissue behaviour and helped to improve the ability to closely simulate facial changes following orthognathic surgery. This was particularly noticed following the introduction of the three dimensional imaging into the medical research and clinical applications. Several approaches have been considered to mathematically predict soft tissue changes in three dimensions, following orthognathic surgery. The most common are the Finite element model and Mass tensor Model. These were developed into software packages which are currently used in clinical practice. In general, these methods produce an acceptable level of prediction accuracy of soft tissue changes following orthognathic surgery. Studies, however, have shown a limited prediction accuracy at specific regions of the face, in particular the areas around the lips. Aims The aim of this project is to conduct a comprehensive assessment of hard and soft tissue changes following orthognathic surgery and introduce a new method for prediction of facial soft tissue changes. Methodology The study was carried out on the pre- and post-operative CBCT images of 100 patients who received their orthognathic surgery treatment at Glasgow dental hospital and school, Glasgow, UK. Three groups of patients were included in the analysis; patients who underwent Le Fort I maxillary advancement surgery; bilateral sagittal split mandibular advancement surgery or bimaxillary advancement surgery. A generic facial mesh was used to standardise the information obtained from individual patient’s facial image and Principal component analysis (PCA) was applied to interpolate the correlations between the skeletal surgical displacement and the resultant soft tissue changes. The identified relationship between hard tissue and soft tissue was then applied on a new set of preoperative 3D facial images and the predicted results were compared to the actual surgical changes measured from their post-operative 3D facial images. A set of validation studies was conducted. To include: • Comparison between voxel based registration and surface registration to analyse changes following orthognathic surgery. The results showed there was no statistically significant difference between the two methods. Voxel based registration, however, showed more reliability as it preserved the link between the soft tissue and skeletal structures of the face during the image registration process. Accordingly, voxel based registration was the method of choice for superimposition of the pre- and post-operative images. The result of this study was published in a refereed journal. • Direct DICOM slice landmarking; a novel technique to quantify the direction and magnitude of skeletal surgical movements. This method represents a new approach to quantify maxillary and mandibular surgical displacement in three dimensions. The technique includes measuring the distance of corresponding landmarks digitized directly on DICOM image slices in relation to three dimensional reference planes. The accuracy of the measurements was assessed against a set of “gold standard” measurements extracted from simulated model surgery. The results confirmed the accuracy of the method within 0.34mm. Therefore, the method was applied in this study. The results of this validation were published in a peer refereed journal. • The use of a generic mesh to assess soft tissue changes using stereophotogrammetry. The generic facial mesh played a major role in the soft tissue dense correspondence analysis. The conformed generic mesh represented the geometrical information of the individual’s facial mesh on which it was conformed (elastically deformed). Therefore, the accuracy of generic mesh conformation is essential to guarantee an accurate replica of the individual facial characteristics. The results showed an acceptable overall mean error of the conformation of generic mesh 1 mm. The results of this study were accepted for publication in peer refereed scientific journal. Skeletal tissue analysis was performed using the validated “Direct DICOM slices landmarking method” while soft tissue analysis was performed using Dense correspondence analysis. The analysis of soft tissue was novel and produced a comprehensive description of facial changes in response to orthognathic surgery. The results were accepted for publication in a refereed scientific Journal. The main soft tissue changes associated with Le Fort I were advancement at the midface region combined with widening of the paranasal, upper lip and nostrils. Minor changes were noticed at the tip of the nose and oral commissures. The main soft tissue changes associated with mandibular advancement surgery were advancement and downward displacement of the chin and lower lip regions, limited widening of the lower lip and slight reversion of the lower lip vermilion combined with minimal backward displacement of the upper lip were recorded. Minimal changes were observed on the oral commissures. The main soft tissue changes associated with bimaxillary advancement surgery were generalized advancement of the middle and lower thirds of the face combined with widening of the paranasal, upper lip and nostrils regions. In Le Fort I cases, the correlation between the changes of the facial soft tissue and the skeletal surgical movements was assessed using PCA. A statistical method known as ’Leave one out cross validation’ was applied on the 30 cases which had Le Fort I osteotomy surgical procedure to effectively utilize the data for the prediction algorithm. The prediction accuracy of soft tissue changes showed a mean error ranging between (0.0006mm±0.582) at the nose region to (-0.0316mm±2.1996) at the various facial regions.
Resumo:
Congenital heart disease (CHD) is the most common birth defect, causing an important rate of morbidity and mortality. Treatment of CHD requires surgical correction in a significant percentage of cases which exposes patients to cardiac and end organ injury. Cardiac surgical procedures often require the utilisation of cardiopulmonary bypass (CPB), a system that replaces heart and lungs function by diverting circulation into an external circuit. The use of CPB can initiate potent inflammatory responses, in addition a proportion of procedures require a period of aortic cross clamp during which the heart is rendered ischaemic and is exposed to injury. High O2 concentrations are used during cardiac procedures and when circulation is re-established to the heart which had adjusted metabolically to ischaemia, further injury is caused in a process known as ischaemic reperfusion injury (IRI). Several strategies are in place in order to protect the heart during surgery, however injury is still caused, having detrimental effects in patients at short and long term. Remote ischaemic preconditioning (RIPC) is a technique proposed as a potential cardioprotective measure. It consists of exposing a remote tissue bed to brief episodes of ischaemia prior to surgery in order to activate protective pathways that would act during CPB, ischaemia and reperfusion. This study aimed to assess RIPC in paediatric patients requiring CHD surgical correction with a translational approach, integrating clinical outcome, marker analysis, cardiac function parameters and molecular mechanisms within the cardiac tissue. A prospective, single blinded, randomized, controlled trial was conducted applying a RIPC protocol to randomised patients through episodes of limb ischaemia on the day before surgery which was repeated right before the surgery started, after anaesthesia induction. Blood samples were obtained before surgery and at three post-operative time points from venous lines, additional pre and post-bypass blood samples were obtained from the right atrium. Myocardial tissue was resected during the ischaemic period of surgery. Echocardiographic images were obtained before the surgery started after anaesthetic induction and the day after surgery, images were stored for later off line analysis. PICU surveillance data was collected including ventilation parameters, inotrope use, standard laboratory analysis and six hourly blood gas analysis. Pre and post-operative quantitation of markers in blood specimens included cardiac troponin I (cTnI) and B-type natriuretic peptide (BNP), inflammatory mediators including interleukins IL-6, IL-8, IL-10, tumour necrosis factor (TNF-α), and the adhesion molecules ICAM-1 and VCAM-1; the renal marker Cystatin C and the cardiovascular markers asymmetric dymethylarginine (ADMA) and symmetric dymethylarginine (SDMA). Nitric oxide (NO) metabolites and cyclic guanosine monophosphate (cGMP) were measured before and after bypass. Myocardial tissue was processed at baseline and after incubation at hyperoxic concentration during four hours in order to mimic surgical conditions. Expression of genes involved in IRI and RIPC pathways was analysed including heat shock proteins (HSPs), toll like receptors (TLRs), transcription factors nuclear factor κ-B (NF- κ-B) and hypoxia inducible factor 1 (HIF-1). The participation of hydrogen sulfide enzymatic genes, apelin and its receptor were explored. There was no significant difference according to group allocation in any of the echocardiographic parameters. There was a tendency for higher cTnI values and inotropic score in control patients post-operatively, however this was not statistically significant. BNP presented no significant difference according to group allocation. Inflammatory parameters tended to be higher in the control group, however only TNF- α was significantly higher. There was no difference in levels of Cystatin C, NO metabolites, cGMP, ADMA or SDMA. RIPC patients required shorter PICU stay, all other clinical and laboratory analysis presented no difference related to the intervention. Gene expression analysis revealed interesting patterns before and after incubation. HSP-60 presented a lower expression at baseline in tissue corresponding to RIPC patients, no other differences were found. This study provided with valuable descriptive information on previously known and newly explored parameters in the study population. Demographic characteristics and the presence of cyanosis before surgery influenced patterns of activity in several parameters, numerous indicators were linked to the degree of injury suffered by the myocardium. RIPC did not reduce markers of cardiac injury or improved echocardiographic parameters and it did not have an effect on end organ function; some effects were seen in inflammatory responses and gene expression analysis. Nevertheless, an important clinical outcome indicator, PICU length of stay was reduced suggesting benefit from the intervention. Larger studies with more statistical power could determine if the tendency of lower injury and inflammatory markers linked to RIPC is real. The present results mostly support findings of larger multicentre trials which have reported no cardiac benefit from RIPC in paediatric cardiac surgery.
Resumo:
Foot-and-mouth disease (FMD), a disease of cloven hooved animals caused by FMD virus (FMDV), is one of the most economically devastating diseases of livestock worldwide. The global burden of disease is borne largely by livestock-keepers in areas of Africa and Asia where the disease is endemic and where many people rely on livestock for their livelihoods and food-security. Yet, there are many gaps in our knowledge of the drivers of FMDV circulation in these settings. In East Africa, FMD epidemiology is complicated by the circulation of multiple FMDV serotypes (distinct antigenic variants) and by the presence of large populations of susceptible wildlife and domestic livestock. The African buffalo (Syncerus caffer) is the only wildlife species with consistent evidence of high levels of FMDV infection, and East Africa contains the largest population of this species globally. To inform FMD control in this region, key questions relate to heterogeneities in FMD prevalence and impacts in different livestock management systems and to the role of wildlife as a potential source of FMDV for livestock. To develop FMD control strategies and make best use of vaccine control options, serotype-specific patterns of circulation need to be characterised. In this study, the impacts and epidemiology of FMD were investigated across a range of traditional livestock-keeping systems in northern Tanzania, including pastoralist, agro-pastoralist and rural smallholder systems. Data were generated through field studies and laboratory analyses between 2010 and 2015. The study involved analysis of existing household survey data and generated serological data from cross-sectional livestock and buffalo samples and longitudinal cattle samples. Serological analyses included non-structural protein ELISAs, serotype-specific solid-phase competitive ELISAs, with optimisation to detect East African FMDV variants, and virus neutralisation testing. Risk factors for FMDV infection and outbreaks were investigated through analysis of cross-sectional serological data in conjunction with a case-control outbreak analysis. A novel Bayesian modeling approach was developed to infer serotype-specific infection history from serological data, and combined with virus isolation data from FMD outbreaks to characterise temporal and spatial patterns of serotype-specific infection. A high seroprevalence of FMD was detected in both northern Tanzanian livestock (69%, [66.5 - 71.4%] in cattle and 48.5%, [45.7-51.3%] in small ruminants) and in buffalo (80.9%, [74.7-86.1%]). Four different serotypes of FMDV (A, O, SAT1 and SAT2) were isolated from livestock. Up to three outbreaks per year were reported by households and active surveillance highlighted up to four serial outbreaks in the same herds within three years. Agro-pastoral and pastoral livestock keepers reported more frequent FMD outbreaks compared to smallholders. Households in all three management systems reported that FMD outbreaks caused significant impacts on milk production and sales, and on animals’ draught power, hence on crop production, with implications for food security and livelihoods. Risk factor analyses showed that older livestock were more likely to be seropositive for FMD (Odds Ratio [OR] 1.4 [1.4-1.5] per extra year) and that cattle (OR 3.3 [2.7-4.0]) were more likely than sheep and goats to be seropositive. Livestock managed by agro-pastoralists (OR 8.1 [2.8-23.6]) or pastoralists (OR 7.1 [2.9-17.6]) were more likely to be seropositive compared to those managed by smallholders. Larger herds (OR: 1.02 [1.01-1.03] per extra bovine) and those that recently acquired new livestock (OR: 5.57 [1.01 – 30.91]) had increased odds of suffering an FMD outbreak. Measures of potential contact with buffalo or with other FMD susceptible wildlife did not increase the likelihood of FMD in livestock in either the cross-sectional serological analysis or case-control outbreak analysis. The Bayesian model was validated to correctly infer from ELISA data the most recent serotype to infect cattle. Consistent with the lack of risk factors related to wildlife contact, temporal and spatial patterns of exposure to specific FMDV serotypes were not tightly linked in cattle and buffalo. In cattle, four serial waves of different FMDV serotypes that swept through southern Kenyan and northern Tanzanian livestock populations over a four-year period dominated infection patterns. In contrast, only two serotypes (SAT1 and SAT2) dominated in buffalo populations. Key conclusions are that FMD has a substantial impact in traditional livestock systems in East Africa. Wildlife does not currently appear to act as an important source of FMDV for East African livestock, and control efforts in the region should initially focus on livestock management and vaccination strategies. A novel modeling approach greatly facilitated the interpretation of serological data and may be a potent epidemiological tool in the African setting. There was a clear temporal pattern of FMDV antigenic dominance across northern Tanzania and southern Kenya. Longer-term research to investigate whether serotype-specific FMDV sweeps are truly predictable, and to shed light on FMD post-infection immunity in animals exposed to serial FMD infections is warranted.