5 resultados para High-throughput

em Glasgow Theses Service


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dengue fever is one of the most important mosquito-borne diseases worldwide and is caused by infection with dengue virus (DENV). The disease is endemic in tropical and sub-tropical regions and has increased remarkably in the last few decades. At present, there is no antiviral or approved vaccine against the virus. Treatment of dengue patients is usually supportive, through oral or intravenous rehydration, or by blood transfusion for more severe dengue cases. Infection of DENV in humans and mosquitoes involves a complex interplay between the virus and host factors. This results in regulation of numerous intracellular processes, such as signal transduction and gene transcription which leads to progression of disease. To understand the mechanisms underlying the disease, the study of virus and host factors is therefore essential and could lead to the identification of human proteins modulating an essential step in the virus life cycle. Knowledge of these human proteins could lead to the discovery of potential new drug targets and disease control strategies in the future. Recent advances of high throughput screening technologies have provided researchers with molecular tools to carry out investigations on a large scale. Several studies have focused on determination of the host factors during DENV infection in human and mosquito cells. For instance, a genome-wide RNA interference (RNAi) screen has identified host factors that potentially play an important role in both DENV and West Nile virus replication (Krishnan et al. 2008). In the present study, a high-throughput yeast two-hybrid screen has been utilised in order to identify human factors interacting with DENV non-structural proteins. From the screen, 94 potential human interactors were identified. These include proteins involved in immune signalling regulation, potassium voltage-gated channels, transcriptional regulators, protein transporters and endoplasmic reticulum-associated proteins. Validation of fifteen of these human interactions revealed twelve of them strongly interacted with DENV proteins. Two proteins of particular interest were selected for further investigations of functional biological systems at the molecular level. These proteins, including a nuclear-associated protein BANP and a voltage-gated potassium channel Kv1.3, both have been identified through interaction with the DENV NS2A. BANP is known to be involved in NF-kB immune signalling pathway, whereas, Kv1.3 is known to play an important role in regulating passive flow of potassium ions upon changes in the cell transmembrane potential. This study also initiated a construction of an Aedes aegypti cDNA library for use with DENV proteins in Y2H screen. However, several issues were encountered during the study which made the library unsuitable for protein interaction analysis. In parallel, innate immune signalling was also optimised for downstream analysis. Overall, the work presented in this thesis, in particular the Y2H screen provides a number of human factors potentially targeted by DENV during infection. Nonetheless, more work is required to be done in order to validate these proteins and determine their functional properties, as well as testing them with infectious DENV to establish a biological significance. In the long term, data from this study will be useful for investigating potential human factors for development of antiviral strategies against dengue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Droplet microfluidics is an active multidisciplinary area of research that evolved out of the larger field of microfluidics. It enables the user to handle, process and manipulate micrometer-sized emulsion droplets on a micro- fabricated platform. The capability to carry out a large number of individual experiments per unit time makes the droplet microfluidic technology an ideal high-throughput platform for analysis of biological and biochemical samples. The objective of this thesis was to use such a technology for designing systems with novel implications in the newly emerging field of synthetic biology. Chapter 4, the first results chapter, introduces a novel method of droplet coalescence using a flow-focusing capillary device. In Chapter 5, the development of a microfluidic platform for the fabrication of a cell-free micro-environment for site-specific gene manipulation and protein expression is described. Furthermore, a novel fluorescent reporter system which functions both in vivo and in vitro is introduced in this chapter. Chapter 6 covers the microfluidic fabrication of polymeric vesicles from poly(2-methyloxazoline-b-dimethylsiloxane-b-2-methyloxazoline) tri-block copolymer. The polymersome made from this polymer was used in the next Chapter for the study of a chimeric membrane protein called mRFP1-EstA∗. In Chapter 7, the application of microfluidics for the fabrication of synthetic biological membranes to recreate artificial cell- like chassis structures for reconstitution of a membrane-anchored protein is described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Re-creating and understanding the origin of life represents one of the major challenges facing the scientific community. We will never know exactly how life started on planet Earth, however, we can reconstruct the most likely chemical pathways that could have contributed to the formation of the first living systems. Traditionally, prebiotic chemistry has investigated the formation of modern life’s precursors and their self-organisation under very specific conditions thought to be ‘plausible’. So far, this approach has failed to produce a living system from the bottom-up. In the work presented herein, two different approaches are employed to explore the transition from inanimate to living matter. The development of microfluidic technology during the last decades has changed the way traditional chemical and biological experiments are performed. Microfluidics allows the handling of low volumes of reagents with very precise control. The use of micro-droplets generated within microfluidic devices is of particular interest to the field of Origins of Life and Artificial Life. Whilst many efforts have been made aiming to construct cell-like compartments from modern biological constituents, these are usually very difficult to handle. However, microdroplets can be easily generated and manipulated at kHz rates, making it suitable for high-throughput experimentation and analysis of compartmentalised chemical reactions. Therefore, we decided to develop a microfluidic device capable of manipulating microdroplets in such a way that they could be efficiently mixed, split and sorted within iterative cycles. Since no microfluidic technology had been developed before in the Cronin Group, the first chapter of this thesis describes the soft lithographic methods and techniques developed to fabricate microfluidic devices. Also, special attention is placed on the generation of water-in-oil microdroplets, and the subsequent modules required for the manipulation of the droplets such as: droplet fusers, splitters, sorters and single/multi-layer micromechanical valves. Whilst the first part of this thesis describes the development of a microfluidic platform to assist chemical evolution, finding a compatible set of chemical building blocks capable of reacting to form complex molecules with endowed replicating or catalytic activity was challenging. Abstract 10 Hence, the second part of this thesis focuses on potential chemistry that will ultimately possess the properties mentioned above. A special focus is placed on the formation of peptide bonds from unactivated amino acids, despite being one of the greatest challenges in prebiotic chemistry. As opposed to classic prebiotic experiments, in which a specific set of conditions is studied to fit a particular hypothesis, we took a different approach: we explored the effects of several parameters at once on a model polymerisation reaction, without constraints on hypotheses on the nature of optimum conditions or plausibility. This was facilitated by development of a new high-throughput automated platform, allowing the exploration of a much larger number of parameters. This led us to discover that peptide bond formation is less challenging than previously imagined. Having established the right set of conditions under which peptide bond formation was enhanced, we then explored the co-oligomerisation between different amino acids, aiming for the formation of heteropeptides with different structure or function. Finally, we studied the effect of various environmental conditions (rate of evaporation, presence of salts or minerals) in the final product distribution of our oligomeric products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serosurveillance is a powerful tool fundamental to understanding infectious disease dynamics. The presence of virus neutralising antibody (VNAb) in sera is considered the best evidence of infection, or indeed vaccination, and the gold standard serological assay for their detection is the virus neutralisation test (VNT). However, VNTs are labour intensive, costly and time consuming. In addition, VNTs for the detection of antibodies to highly pathogenic viruses require the use of high containment facilities, restricting the application of these assays to the few laboratories with adequate facilities. As a result, robust serological data on such viruses are limited. In this thesis I develop novel VNTs for the detection of VNAb to two important, highly pathogenic, zoonotic viruses; rabies and Rift Valley fever virus (RVFV). The pseudotype-based neutralisation test developed in this study allows for the detection of rabies VNAb without the requirement for high containment facilities. This assay was utilised to investigate the presence of rabies VNAb in animals from a variety of ecological settings. In this thesis I present evidence of natural rabies infection in both domestic dogs and lions from rabies endemic settings. The assay was further used to investigate the kinetics of VNAb response to rabies vaccination in a cohort of free-roaming dogs. The RVFV neutralisation assay developed herein utilises a recombinant luciferase expressing RVFV, which allows for rapid, high-throughput serosurveillance of this important neglected pathogen. In this thesis I present evidence of RVFV infection in a variety of domestic and wildlife species from Northern Tanzania, in addition to the detection of low-level transmission of RVFV during interepidemic periods. Additionally, the investigation of a longitudinal cohort of domestic livestock also provided evidence of rapid waning of RVF VNAb following natural infection. Collectively, the serological data presented in this thesis are consistent with existing data in the literature generated using the gold standard VNTs. Increasing the availability of serological assays will allow the generation of robust serological data, which are imperative to enhancing our understanding of the complex, multi-host ecology of these two viruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial diarrhoeal diseases have significant influence on global human health, and are a leading cause of preventable death in the developing world. Enterohaemorrhagic Escherichia coli (EHEC), pathogenic strains of E. coli that carry potent toxins, have been associated with a high number of large-scale outbreaks caused by contaminated food and water sources. This pathotype produces diarrhoea and haemorrhagic colitis in infected humans, and in some patients leads to the development of haemolytic uremic syndrome (HUS), which can result in mortality and chronic kidney disease. A major obstacle to the treatment of EHEC infections is the increased risk of HUS development that is associated with antibiotic treatment, and rehydration and renal support are often the only options available. New treatments designed to prevent or clear E. coli infections and reduce symptoms of illness would therefore have large public health and economic impacts. The three main aims of this thesis were: to explore mouse models for pre-clinical evaluation in vivo of small compounds that inhibit a major EHEC colonisation factor, to assess the production and role of two proteins considered promising candidates for a broad-spectrum vaccine against pathogenic E. coli, and to investigate a novel compound that has recently been identified as a potential inhibitor of EHEC toxin production. As EHEC cannot be safely tested in humans due to the risk of HUS development, appropriate small animal models are required for in vivo testing of new drugs. A number of different mouse models have been developed to replicate different features of EHEC pathogenesis, several of which we investigated with a focus on colonisation mediated by the Type III Secretion System (T3SS), a needle-like structure that translocates bacterial proteins into host cells, resulting in a tight, intimate attachment between pathogen and host, aiding colonisation of the gastrointestinal tract. As E. coli models were found not to depend significantly on the T3SS for colonisation, the Citrobacter rodentium model, a natural mouse pathogen closely related to E. coli, was deemed the most suitable mouse model currently available for in vivo testing of T3SS-targeting compounds. Two bacterial proteins, EaeH (an outer membrane adhesin) and YghJ (a putative secreted lipoprotein), highly conserved surface-associated proteins recently identified as III protective antigens against E. coli infection of mice, were explored in order to determine their suitability as candidates for a human vaccine against pathogenic E. coli. We focused on the expression and function of these proteins in the EHEC O157:H7 EDL933 strain and the adherent-invasive E. coli (AIEC) LF82 strain. Although expression of EaeH by other E. coli pathotypes has recently been shown to be upregulated upon contact with host intestinal cells, no evidence of this upregulation could be demonstrated in our strains. Additionally, while YghJ was produced by the AIEC strain, it was not secreted by bacteria under conditions that other YghJ-expressing E. coli pathotypes do, despite the AIEC strain carrying all the genes required to encode the secretion system it is associated with. While our findings indicate that a vaccine that raises antibodies against EaeH and YghJ may have limited effect on the EHEC and AIEC strains we used, recent studies into these proteins in different E. coli pathogens have suggested they are still excellent candidates for a broadly effective vaccine against E. coli. Finally, we characterised a small lead compound, identified by high-throughput screening as a possible inhibitor of Shiga toxin expression. Shiga toxin production causes both the symptoms of illness and development of HUS, and thus reduction of toxin production, release, or binding to host receptors could therefore be an effective way to treat infections and decrease the risk of HUS. Inhibition of Shiga toxin production by this compound was confirmed, and was shown to be caused by an inhibitory effect on activation of the bacterial SOS response rather than on the Shiga toxin genes themselves. The bacterial target of this compound was identified as RecA, a major regulator of the SOS response, and we hypothesise that the compound binds covalently to its target, preventing oligomerisation of RecA into an activated filament. Altogether, the results presented here provide an improved understanding of these different approaches to combating EHEC infection, which will aid the development of safe and effective vaccines and anti-virulence treatments against EHEC.