2 resultados para Heart-rate Changes

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular disease is one of the leading causes of death around the world. Resting heart rate has been shown to be a strong and independent risk marker for adverse cardiovascular events and mortality, and yet its role as a predictor of risk is somewhat overlooked in clinical practice. With the aim of highlighting its prognostic value, the role of resting heart rate as a risk marker for death and other adverse outcomes was further examined in a number of different patient populations. A systematic review of studies that previously assessed the prognostic value of resting heart rate for mortality and other adverse cardiovascular outcomes was presented. New analyses of nine clinical trials were carried out. Both the original and extended Cox model that allows for analysis of time-dependent covariates were used to evaluate and compare the predictive value of baseline and time-updated heart rate measurements for adverse outcomes in the CAPRICORN, EUROPA, PROSPER, PERFORM, BEAUTIFUL and SHIFT populations. Pooled individual patient meta-analyses of the CAPRICORN, EPHESUS, OPTIMAAL and VALIANT trials, and the BEAUTIFUL and SHIFT trials, were also performed. The discrimination and calibration of the models applied were evaluated using Harrell’s C-statistic and likelihood ratio tests, respectively. Finally, following on from the systematic review, meta-analyses of the relation between baseline and time-updated heart rate, and the risk of death from any cause and from cardiovascular causes, were conducted. Both elevated baseline and time-updated resting heart rates were found to be associated with an increase in the risk of mortality and other adverse cardiovascular events in all of the populations analysed. In some cases, elevated time-updated heart rate was associated with risk of events where baseline heart rate was not. Time-updated heart rate also contributed additional information about the risk of certain events despite knowledge of baseline heart rate or previous heart rate measurements. The addition of resting heart rate to the models where resting heart rate was found to be associated with risk of outcome improved both discrimination and calibration, and in general, the models including time-updated heart rate along with baseline or the previous heart rate measurement had the highest and similar C-statistics, and thus the greatest discriminative ability. The meta-analyses demonstrated that a 5bpm higher baseline heart rate was associated with a 7.9% and an 8.0% increase in the risk of all-cause and cardiovascular death, respectively (both p less than 0.001). Additionally, a 5bpm higher time-updated heart rate (adjusted for baseline heart rate in eight of the ten studies included in the analyses) was associated with a 12.8% (p less than 0.001) and a 10.9% (p less than 0.001) increase in the risk of all-cause and cardiovascular death, respectively. These findings may motivate health care professionals to routinely assess resting heart rate in order to identify individuals at a higher risk of adverse events. The fact that the addition of time-updated resting heart rate improved the discrimination and calibration of models for certain outcomes, even if only modestly, strengthens the case that it be added to traditional risk models. The findings, however, are of particular importance, and have greater implications for the clinical management of patients with pre-existing disease. An elevated, or increasing heart rate over time could be used as a tool, potentially alongside other established risk scores, to help doctors identify patient deterioration or those at higher risk, who might benefit from more intensive monitoring or treatment re-evaluation. Further exploration of the role of continuous recording of resting heart rate, say, when patients are at home, would be informative. In addition, investigation into the cost-effectiveness and optimal frequency of resting heart rate measurement is required. One of the most vital areas for future research is the definition of an objective cut-off value for the definition of a high resting heart rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The life history of a population of Lutraria lutraria in a depth of 7m at Hunterston, Ayrshire is discussed. Much of the present population Is thought to have settled in 1967. The functional morphology of Lutraria is described and related to its life as a large, deep-burrowing bivalve. Lutraria spawned in late spring and continued to do so through the summer in 1979 and 1980. Animals became spent in August and September. Unsuccessful attempts were made to induce spawning in the laboratory. Artificial fertilization was successful but development did not proceed beyond the ciliated gastrula stage. Larvae of Lutraria were not identified in plankton samples and young stages were not encountered in sieved sediment samples. The biochemical cycle of the total animal and five component parts (gonad and visceral mass, digestive gland, adductor muscle, siphon and 'other' tissue) is investigated. A marked increase in weight, reflected in an increase in weight of the component parts, was recorded in Autumn 1979. This is thought to be related to an exceptional increase in the phytoplankton at this time. Although a relationship between the biochemical cycle and reproductive cycle remains uncertain, definite seasonal changes were recorded in the respiration rate of Lutraria. At 10°C, the maximum rate of a standard 20g animal was 0.1283m1s 02/g. dry wt./hr. in May 1980 and the minimum rate was 0.O59mls 02/g. dry wt./hr. in October 1980. The effect of temperature on respiration rate was also investigated. Significant differences were recorded for five experimental temperatures (10°C, 15°C, 20°C, 25°C and 30 °C) in August and October but only between two temperatures (10 C and 30 C) in April. There was a decrease in respiration rate at 30 C in August and October, but an increase in April. Respiration rate is affected by a reduction in oxygen tension. A variety of responses were recorded with a small degree of regulation shown. Individuals of Lutraria were able to survive 48 hours under anaerobic conditions. In fully oxygenated conditions heart rate ranged from 4-15 beats per minute with an average of 8 beats per minute. Heart beat was markedly affected by changes in temperature and oxygen tension, increasing to a maximum 22 beats per minute at 25 C, and decreasing to a minimum 2 beats per minute in anaerobic conditions. Heart rate is reduced (12 beats per minute to 5 beats per minute) on exposure to air. Lutraria exhibits an intermittent pattern of pumping activity. Under normal conditions 35% of the time is spent pumping and this Increases as oxygen is reduced (3.00mls 02/litre) to 65% of the time spent pumping. 15. Under normal conditions the respiratory flow varies between 0.382 litres per hour and 1.023 litres per hxir. Adult Lutraria maintain their ability to burrow, albeit slowly.