2 resultados para Health status indicators

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Receiving personalised feedback on body mass index and other health risk indicators may prompt behaviour change. Few studies have investigated men’s reactions to receiving objective feedback on such measures and detailed information on physical activity and sedentary time. The aim of my research was to understand the meanings different forms of objective feedback have for overweight/obese men, and to explore whether these varied between groups. Participants took part in Football Fans in Training, a gender-sensitised, weight loss programme delivered via Scottish Professional Football Clubs. Semi-structured interviews were conducted with 28 men, purposively sampled from four clubs to investigate the experiences of men who achieved and did not achieve their 5% weight loss target. Data were analysed using the principles of thematic analysis and interpreted through Self-Determination Theory and sociological understandings of masculinity. Several factors were vital in supporting a ‘motivational climate’ in which men could feel ‘at ease’ and adopt self-regulation strategies: the ‘place’ was described as motivating, whereas the ‘people’ (other men ‘like them’; fieldwork staff; community coaches) provided supportive and facilitative roles. Men who achieved greater weight loss were more likely to describe being motivated as a consequence of receiving information on their objective health risk indicators. They continued using self-monitoring technologies after the programme as it was enjoyable; or they had redefined themselves by integrating new-found activities into their lives and no longer relied on external technologies/feedback. They were more likely to see post-programme feedback as confirmation of success, so long as they could fully interpret the information. Men who did not achieve their 5% weight loss reported no longer being motivated to continue their activity levels or self-monitor them with a pedometer. Social support within the programme appeared more important. These men were also less positive about objective post-programme feedback which confirmed their lack of success and had less utility as a motivational tool. Providing different forms of objective feedback to men within an environment that has intrinsic value (e.g. football club setting) and congruent with common cultural constructions of masculinity, appears more conducive to health behaviour change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.