2 resultados para Global Cauchy Problem
em Glasgow Theses Service
“Enjoy your baby” Internet-based CBT for mothers with babies: a feasibility randomised control trial
Resumo:
Background: Postnatal depression is a global health problem with lasting effects on the family. Government policy is focussed on early intervention and increasing access to psychological therapies. There is a growing evidence base for the use of computerised CBT packages and this study investigated the feasibility of a CBT-based self-help internet intervention for new mothers. Objective: To assess the ability to recruit mothers, deliver an internet course, obtain follow-up data and evaluate what mothers think of the course. Design: A feasibility randomised control design was used to compare a waiting list control group (delayed access= DA) to the Enjoy Your Baby course (immediate access= IA). Measures were administered at baseline and 8 week follow-up. Methods: Adverts were placed in the Metro freesheet, on charity web pages, on social media, posters were put up in the community, and leaflets were handed out at mother and baby groups. Participants had to be 18 years old or over with a child less than 18 months old. The IA arm was given access to the course straight away. After 8 weeks all participants were asked to recomplete the original measures and those in the IA arm also gave feedback on the course. Participants in the DA arm were given access after recompleting the questionnaires. Due to a lack of follow-up data a small discussion group was conducted. Intervention: The course contains 4 core modules including helping mothers understand why they feel the way they do and helping them build closeness to their babies. Additional modules, worksheets and homework tasks were available. The DA group were given a list of additional support resources and services, and encouraged to seek additional help if required. All participants received weekly automated emails for 12 weeks as they worked through the course. It was not possible to deliver individualised support. 34 Results: Despite using a number of recruitment strategies, recruitment was lower and slower than anticipated, and attrition was high. 41 women, primarily recruited via the internet, were randomised (IA n=21, DA n=20). No significant differences were observed between participants in either arm at baseline and no statistically significant differences were identified when the demographics and baseline measures of participants who logged-on to the course were compared to those who did not, or when participants who completed follow-up measures were compared to those who did not. Pre and post intervention scores on the EPDS approached statistical significance (P=.059, r=.444) favouring the intervention arm. The discussion group suggested strengths of the course and recommended areas for improvement, including making the course more mobile friendly. Conclusion: Internet interventions show promise; however it is difficult to recruit mothers, engagement is low and attrition high. A number of recommendations are made and a further pilot or an internal pilot of a larger substantive study should be conducted to confirm recruitment and retention. Trial ID: ISRCTN90927910.
Resumo:
Background: Obesity is not a new disease, with roots that can be traced back to 400 BC. However, with the staggering increase in individuals that are overweight and obese since the 1980s, now over a quarter of individuals in Europe and the Americas are classed as obese. This presents a global health problem that needs to be addressed with novel therapies. It is now well accepted that obesity is a chronic, low-grade inflammatory condition that could predispose individuals to a number of comorbidities. Obesity is associated with cardiovascular diseases (CVDs) and type 2 diabetes (T2D) as part of “the metabolic syndrome,” and as first identified by Dr Vauge, central distribution of white adipose tissue (WAT) is an important risk factor in the development of these diseases. Subsequently, visceral WAT (vWAT) was shown to be an important factor in this association with CVDs and T2D, and increasing inflammation. As the obese WAT expands, mainly through hypertrophy, there is an increase in inflammation that recruits numerous immune cells to the tissue that further exacerbate this inflammation, causing local and systemic inflammatory and metabolic effects. One of the main types of immune cell involved in this pathogenic process is pro-inflammatory M1 adipose tissue macrophages (ATMs). MicroRNAs (miRNAs) are a species of small RNAs that post-transcriptionally regulate gene expression by targeting gene mRNA, causing its degradation or translational repression. These miRNAs are promiscuous, regulating numerous genes and pathways involved in a disease, making them useful therapeutic targets, but also difficult to study. miR-34a has been shown to increase in the serum, liver, pancreas, and subcutaneous (sc)WAT of patients with obesity, non- alcoholic fatty liver disease (NAFLD) and T2D. Additionally, miR-34a has been shown to regulate a number of metabolic and inflammatory genes in numerous cell types, including those in macrophages. However, the role of miR-34a in regulating vWAT metabolism and inflammation is poorly understood. Hypothesis: miR-34a is dysregulated in the adipose tissue during obesity, causing dysregulation of metabolic and inflammatory pathways in adipocytes and ATMs that contribute to adipose inflammation and obesity’s comorbidities, particularly T2D. Method/Results: The role of miR-34a in adipose inflammation was investigated using a murine miR-34a-/- diet-induced obesity model, and primary in vitro models of adipocyte differentiation and inflammatory bone marrow-derived macrophages (BMDMs). miR-34a was shown to be ubiquitously expressed throughout the murine epididymal (e)WAT of obese high-fat diet (HFD)-fed WT mice and ob/ob mice, as well as omental WAT from patients with obesity. Additionally, miR-34a transcripts were increased in the liver and brown adipose tissue (BAT) of ob/ob and HFD-fed WT mice, compared to WT controls. When miR-34a-/- mice were fed HFD ad libitum for 24 weeks they were significantly heavier than their WT counterparts by the end of the study. Ex vivo examinations showed that miR-34a-/- eWAT had a smaller adipocyte area on chow, which significantly increased to WT levels during HFD-feeding. Additionally, miR-34a-/- eWAT showed basal increases in cholesterol and fatty acid metabolism genes Cd36, Hmgcr, Lxrα, Pgc1α, and Fasn. miR-34a-/- iBAT showed basal reductions in Cebpα and Cebpβ, with increased Pgc1α expression during HFD- feeding. The miR-34a-/- liver additionally showed increased basal transcript expression of Pgc1α, suggesting miR-34a may broadly regulate PGC1α. Accompanying the ex vivo changes in cholesterol and fatty acid metabolism genes, in vitro miR-34a-/- white adipocytes showed increased lipid content. An F4/80high macrophage population was identified in HFD-fed miR-34a-/- eWAT, with increased Il-10 transcripts and serum IL-5 protein. Following these ex vivo observations, BMDMs from WT mice upregulated miR-34a expression in response to TNFα stimulation. Additionally, miR-34a-/- BMDMs showed an ablated CXCL1 response to TNFα. Conclusion: These findings suggest miR-34a has a multi-factorial role in controlling a susceptibility to obesity, by regulating inflammatory and metabolic pathways, potentially through regulation of PGC1α.