3 resultados para Functional outcome, metastatic spinal cord compression, prognostic factors

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord injury (SCI) is a devastating condition, which results from trauma to the cord, resulting in a primary injury response which leads to a secondary injury cascade, causing damage to both glial and neuronal cells. Following trauma, the central nervous system (CNS) fails to regenerate due to a plethora of both intrinsic and extrinsic factors. Unfortunately, these events lead to loss of both motor and sensory function and lifelong disability and care for sufferers of SCI. There have been tremendous advancements made in our understanding of the mechanisms behind axonal regeneration and remyelination of the damaged cord. These have provided many promising therapeutic targets. However, very few have made it to clinical application, which could potentially be due to inadequate understanding of compound mechanism of action and reliance on poor SCI models. This thesis describes the use of an established neural cell co-culture model of SCI as a medium throughput screen for compounds with potential therapeutic properties. A number of compounds were screened which resulted in a family of compounds, modified heparins, being taken forward for more intense investigation. Modified heparins (mHeps) are made up of the core heparin disaccharide unit with variable sulphation groups on the iduronic acid and glucosamine residues; 2-O-sulphate (C2), 6-O-sulphate (C6) and N-sulphate (N). 2-O-sulphated (mHep6) and N-sulphated (mHep7) heparin isomers were shown to promote both neurite outgrowth and myelination in the SCI model. It was found that both mHeps decreased oligodendrocyte precursor cell (OPC) proliferation and increased oligodendrocyte (OL) number adjacent to the lesion. However, there is a difference in the direct effects on the OL from each of the mHeps; mHep6 increased myelin internode length and mHep7 increased the overall cell size. It was further elucidated that these isoforms interact with and mediate both Wnt and FGF signalling. In OPC monoculture experiments FGF2 treated OPCs displayed increased proliferation but this effect was removed when co-treated with the mHeps. Therefore, suggesting that the mHeps interact with the ligand and inhibit FGF2 signalling. Additionally, it was shown that both mHeps could be partially mediating their effects through the Wnt pathway. mHep effects on both myelination and neurite outgrowth were removed when co-treated with a Wnt signalling inhibitor, suggesting cell signalling mediation by ligand immobilisation and signalling activation as a mechanistic action for the mHeps. However, the initial methods employed in this thesis were not sufficient to provide a more detailed study into the effects the mHeps have on neurite outgrowth. This led to the design and development of a novel microfluidic device (MFD), which provides a platform to study of axonal injury. This novel device is a three chamber device with two chambers converging onto a central open access chamber. This design allows axons from two points of origin to enter a chamber which can be subjected to injury, thus providing a platform in which targeted axonal injury and the regenerative capacity of a compound study can be performed. In conclusion, this thesis contributes to and advances the study of SCI in two ways; 1) identification and investigation of a novel set of compounds with potential therapeutic potential i.e. desulphated modified heparins. These compounds have multiple therapeutic properties and could revolutionise both the understanding of the basic pathological mechanisms underlying SCI but also be a powered therapeutic option. 2) Development of a novel microfluidic device to study in greater detail axonal biology, specifically, targeted axonal injury and treatment, providing a more representative model of SCI than standard in vitro models. Therefore, the MFD could lead to advancements and the identification of factors and compounds relating to axonal regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Brain computer interface (BCI) is a promising new technology with possible application in neurorehabilitation after spinal cord injury. Movement imagination or attempted movement-based BCI coupled with functional electrical stimulation (FES) enables the simultaneous activation of the motor cortices and the muscles they control. When using the BCI- coupled with FES (known as BCI-FES), the subject activates the motor cortex using attempted movement or movement imagination of a limb. The BCI system detects the motor cortex activation and activates the FES attached to the muscles of the limb the subject is attempting or imaging to move. In this way the afferent and the efferent pathways of the nervous system are simultaneously activated. This simultaneous activation encourages Hebbian type learning which could be beneficial in functional rehabilitation after spinal cord injury (SCI). The FES is already in use in several SCI rehabilitation units but there is currently not enough clinical evidence to support the use of BCI-FES for rehabilitation. Aims: The main aim of this thesis is to assess outcomes in sub-acute tetraplegic patients using BCI-FES for functional hand rehabilitation. In addition, the thesis explores different methods for assessing neurological rehabilitation especially after BCI-FES therapy. The thesis also investigated mental rotation as a possible rehabilitation method in SCI. Methods: Following investigation into applicable methods that can be used to implement rehabilitative BCI, a BCI based on attempted movement was built. Further, the BCI was used to build a BCI-FES system. The BCI-FES system was used to deliver therapy to seven sub-acute tetraplegic patients who were scheduled to receive the therapy over a total period of 20 working days. These seven patients are in a 'BCI-FES' group. Five more patients were also recruited and offered equivalent FES quantity without the BCI. These further five patients are in a 'FES-only' group. Neurological and functional measures were investigated and used to assess both patient groups before and after therapy. Results: The results of the two groups of patients were compared. The patients in the BCI-FES group had better improvements. These improvements were found with outcome measures assessing neurological changes. The neurological changes following the use of the BCI-FES showed that during movement attempt, the activation of the motor cortex areas of the SCI patients became closer to the activation found in healthy individuals. The intensity of the activation and its spatial localisation both improved suggesting desirable cortical reorganisation. Furthermore, the responses of the somatosensory cortex during sensory stimulation were of clear evidence of better improvement in patients who used the BCI-FES. Missing somatosensory evoked potential peaks returned more for the BCI-FES group while there was no overall change in the FES-only group. Although the BCI-FES group had better neurological improvement, they did not show better functional improvement than the FES-only group. This was attributed mainly to the short duration of the study where therapies were only delivered for 20 working days. Conclusions: The results obtained from this study have shown that BCI-FES may induce cortical changes in the desired direction at least faster than FES alone. The observation of better improvement in the patients who used the BCI-FES is a good result in neurorehabilitation and it shows the potential of thought-controlled FES as a neurorehabilitation tool. These results back other studies that have shown the potential of BCI-FES in rehabilitation following neurological injuries that lead to movement impairment. Although the results are promising, further studies are necessary given the small number of subjects in the current study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cell therapy for ischaemic stroke is an emerging field in light of an increasing number of patients surviving with permanent disability. Several allogenic and autologous cells types are now in clinical trials with preliminary evidence of safety. Some clinical studies have reported functional improvements in some patients. After initial safety evaluation in a Phase 1 study, the conditionally immortalised human neural stem cell line CTX0E03 is currently in a Phase 2 clinical trial (PISCES-II). Previous pre-clinical studies conducted by ReNeuron Ltd, showed evidence of functional recovery in the Bilateral Asymmetry test up to 6 weeks following transplantation into rodent brain, 4 weeks after middle cerebral artery occlusion. Resting-state fMRI is increasingly used to investigate brain function in health and disease, and may also act as a predictor of recovery due to known network changes in the post-stroke recovery period. Resting-state methods have also been applied to non-human primates and rodents which have been found to have analogous resting-state networks to humans. The sensorimotor resting-state network of rodents is impaired following experimental focal ischaemia of the middle cerebral artery territory. However, the effects of stem cell implantation on brain functional networks has not previously been investigated. Prior studies assessed sensorimotor function following sub-cortical implantation of CTX0E03 cells in the rodent post-stroke brain but with no MRI assessments of functional improvements. This thesis presents research on the effect of sub-cortical implantation of CTX0E03 cells on the resting- state sensorimotor network and sensorimotor deficits in the rat following experimental stroke, using protocols based on previous work with this cell line. The work in this thesis identified functional tests of appropriate sensitivity for long-term dysfunction suitable for this laboratory, and investigated non-invasive monitoring of physiological variables required to optimize BOLD signal stability within a high-field MRI scanner. Following experimental stroke, rats demonstrated expected sensorimotor dysfunction and changes in the resting-state sensorimotor network. CTX0E03 cells did not improve post-stroke functional outcome (compared to previous studies) and with no changes in resting-state sensorimotor network activity. However, in control animals, we observed changes in functional networks due to the stereotaxic procedure. This illustrates the sensitivity of resting-state fMRI to stereotaxic procedures. We hypothesise that the damage caused by cell or vehicle implantation may have prevented functional and network recovery which has not been previously identified due to the application of different functional tests. The findings in this thesis represent one of few pre-clinical studies in resting-state fMRI network changes post-stroke and the only to date applying this technique to evaluate functional outcomes following a clinically applicable human neural stem cell treatment for ischaemic stroke. It was found that injury caused by stereotaxic injection should be taken into account when assessing the effectiveness of treatment.