2 resultados para Free Cash Flow to Firm
em Glasgow Theses Service
Resumo:
China has been growing rapidly over the last decades. The private sector is the driving force of this growth. This thesis focuses on firm-level investment and cash holdings in China, and the chapters are structured around the following issues. 1. Why do private firms grow so fast when they are more financially constrained? In Chapter 3, we use a panel of over 600,000 firms of different ownership types from 1998 to 2007 to find the link between investment opportunities and financial constraints. The main finding indicates that private firms, which are more likely to be financially constrained, have high investment-investment opportunity sensitivity. Furthermore, this sensitivity is relatively lower for state-owned firms in China. This shows that constrained firms value investment opportunities more than unconstrained firms. To better measure investment opportunities, we attempt to improve the Q model by considering supply and demand sides simultaneously. When we capture q from the supply side and the demand side, we find that various types of firms respond differently towards different opportunity shocks. 2. In China, there are many firms whose cash flow is far greater than their fixed capital investment. Why is their investment still sensitive to cash flow? To explain this, in Chapter 4, we attempt to introduce a new channel to find how cash flow affects firm-level investment. We use a dynamic structural model and take uncertainty and ambiguity aversion into consideration. We find that uncertainty and ambiguity aversion will make investment less sensitive to investment opportunities. However, investment-cash flow sensitivity will increase when uncertainty is high. This suggests that investment cash flow sensitivities could still be high even when the firms are not financially constrained. 3. Why do firms in China hold so much cash? How can managers’ confidence affect corporate cash holdings? In Chapter 5, we analyse corporate cash holdings in China. Firms hold cash for precautionary reasons, to hedge frictions such as financing constraints and uncertainty. In addition, firms may act differently if they are confident or not. In order to determine how confidence shocks affect precautionary savings, we develop a dynamic model taking financing constraints, uncertainty, adjustment costs and confidence shocks into consideration. We find that without confidence shocks, firms will save money in bad times and invest in good times to maximise their value. However, if managers lose their confidence, they tend to save money in good times to use in bad times, to hedge risks and financing constraint problems. This can help explain why people find different results on the cash flow sensitivity of cash. Empirically, we use a panel of Chinese listed firms. The results show that firms in China save more money in good times, and the confidence shock channel can significantly affect firms’ cash holdings policy.
Resumo:
A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.