4 resultados para Field testing and monitoring,

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considerable interest in renewable energy has increased in recent years due to the concerns raised over the environmental impact of conventional energy sources and their price volatility. In particular, wind power has enjoyed a dramatic global growth in installed capacity over the past few decades. Nowadays, the advancement of wind turbine industry represents a challenge for several engineering areas, including materials science, computer science, aerodynamics, analytical design and analysis methods, testing and monitoring, and power electronics. In particular, the technological improvement of wind turbines is currently tied to the use of advanced design methodologies, allowing the designers to develop new and more efficient design concepts. Integrating mathematical optimization techniques into the multidisciplinary design of wind turbines constitutes a promising way to enhance the profitability of these devices. In the literature, wind turbine design optimization is typically performed deterministically. Deterministic optimizations do not consider any degree of randomness affecting the inputs of the system under consideration, and result, therefore, in an unique set of outputs. However, given the stochastic nature of the wind and the uncertainties associated, for instance, with wind turbine operating conditions or geometric tolerances, deterministically optimized designs may be inefficient. Therefore, one of the ways to further improve the design of modern wind turbines is to take into account the aforementioned sources of uncertainty in the optimization process, achieving robust configurations with minimal performance sensitivity to factors causing variability. The research work presented in this thesis deals with the development of a novel integrated multidisciplinary design framework for the robust aeroservoelastic design optimization of multi-megawatt horizontal axis wind turbine (HAWT) rotors, accounting for the stochastic variability related to the input variables. The design system is based on a multidisciplinary analysis module integrating several simulations tools needed to characterize the aeroservoelastic behavior of wind turbines, and determine their economical performance by means of the levelized cost of energy (LCOE). The reported design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity. The presented technology is applied to the design of a 5-MW HAWT rotor to be used at sites of wind power density class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing the mean and standard deviation of the LCOE. Airfoil shapes, spanwise distributions of blade chord and twist, internal structural layup and rotor speed are optimized concurrently, subject to an extensive set of structural and aeroelastic constraints. The effectiveness of the multidisciplinary and robust design framework is demonstrated by showing that the probabilistically designed turbine achieves more favorable probabilistic performance than those of the initial baseline turbine and a turbine designed deterministically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem: Around 300 million people worldwide have asthma and prevalence is increasing. Support for optimal self-management can be effective in improving a range of outcomes and is cost effective, but is underutilised as a treatment strategy. Supporting optimum self-management using digital technology shows promise, but how best to do this is not clear. Aim: The purpose of this project was to explore the potential role of a digital intervention in promoting optimum self-management in adults with asthma. Methods: Following the MRC Guidance on the Development and Evaluation of Complex Interventions which advocates using theory, evidence, user testing and appropriate modelling and piloting, this project had 3 phases. Phase 1: Examination of the literature to inform phases 2 and 3, using systematic review methods and focussed literature searching. Phase 2: Developing the Living Well with Asthma website. A prototype (paper-based) version of the website was developed iteratively with input from a multidisciplinary expert panel, empirical evidence from the literature (from phase 1), and potential end users via focus groups (adults with asthma and practice nurses). Implementation and behaviour change theories informed this process. The paper-based designs were converted to the website through an iterative user centred process (think aloud studies with adults with asthma). Participants considered contents, layout, and navigation. Development was agile using feedback from the think aloud sessions immediately to inform design and subsequent think aloud sessions. Phase 3: A pilot randomised controlled trial over 12 weeks to evaluate the feasibility of a Phase 3 trial of Living Well with Asthma to support self-management. Primary outcomes were 1) recruitment & retention; 2) website use; 3) Asthma Control Questionnaire (ACQ) score change from baseline; 4) Mini Asthma Quality of Life (AQLQ) score change from baseline. Secondary outcomes were patient activation, adherence, lung function, fractional exhaled nitric oxide (FeNO), generic quality of life measure (EQ-5D), medication use, prescribing and health services contacts. Results: Phase1: Demonstrated that while digital interventions show promise, with some evidence of effectiveness in certain outcomes, participants were poorly characterised, telling us little about the reach of these interventions. The interventions themselves were poorly described making drawing definitive conclusions about what worked and what did not impossible. Phase 2: The literature indicated that important aspects to cover in any self-management intervention (digital or not) included: asthma action plans, regular health professional review, trigger avoidance, psychological functioning, self-monitoring, inhaler technique, and goal setting. The website asked users to aim to be symptom free. Key behaviours targeted to achieve this include: optimising medication use (including inhaler technique); attending primary care asthma reviews; using asthma action plans; increasing physical activity levels; and stopping smoking. The website had 11 sections, plus email reminders, which promoted these behaviours. Feedback during think aloud studies was mainly positive with most changes focussing on clarification of language, order of pages and usability issues mainly relating to navigation difficulties. Phase 3: To achieve our recruitment target 5383 potential participants were invited, leading to 51 participants randomised (25 to intervention group). Age range 16-78 years; 75% female; 28% from most deprived quintile. Nineteen (76%) of the intervention group used the website for an average of 23 minutes. Non-significant improvements in favour of the intervention group observed in the ACQ score (-0.36; 95% confidence interval: -0.96, 0.23; p=0.225), and mini-AQLQ scores (0.38; -0.13, 0.89; p=0.136). A significant improvement was observed in the activity limitation domain of the mini-AQLQ (0.60; 0.05 to 1.15; p = 0.034). Secondary outcomes showed increased patient activation and reduced reliance on reliever medication. There was no significant difference in the remaining secondary outcomes. There were no adverse events. Conclusion: Living Well with Asthma has been shown to be acceptable to potential end users, and has potential for effectiveness. This intervention merits further development, and subsequent evaluation in a Phase III full scale RCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design demands on water and sanitation engineers are rapidly changing. The global population is set to rise from 7 billion to 10 billion by 2083. Urbanisation in developing regions is increasing at such a rate that a predicted 56% of the global population will live in an urban setting by 2025. Compounding these problems, the global water and energy crises are impacting the Global North and South alike. High-rate anaerobic digestion offers a low-cost, low-energy treatment alternative to the energy intensive aerobic technologies used today. Widespread implementation however is hindered by the lack of capacity to engineer high-rate anaerobic digestion for the treatment of complex wastes such as sewage. This thesis utilises the Expanded Granular Sludge Bed bioreactor (EGSB) as a model system in which to study the ecology, physiology and performance of high-rate anaerobic digestion of complex wastes. The impacts of a range of engineered parameters including reactor geometry, wastewater type, operating temperature and organic loading rate are systematically investigated using lab-scale EGSB bioreactors. Next generation sequencing of 16S amplicons is utilised as a means of monitoring microbial ecology. Microbial community physiology is monitored by means of specific methanogenic activity testing and a range of physical and chemical methods are applied to assess reactor performance. Finally, the limit state approach is trialled as a method for testing the EGSB and is proposed as a standard method for biotechnology testing enabling improved process control at full-scale. The arising data is assessed both qualitatively and quantitatively. Lab-scale reactor design is demonstrated to significantly influence the spatial distribution of the underlying ecology and community physiology in lab-scale reactors, a vital finding for both researchers and full-scale plant operators responsible for monitoring EGSB reactors. Recurrent trends in the data indicate that hydrogenotrophic methanogenesis dominates in high-rate anaerobic digestion at both full- and lab-scale when subject to engineered or operational stresses including low-temperature and variable feeding regimes. This is of relevance for those seeking to define new directions in fundamental understanding of syntrophic and competitive relations in methanogenic communities and also to design engineers in determining operating parameters for full-scale digesters. The adoption of the limit state approach enabled identification of biological indicators providing early warning of failure under high-solids loading, a vital insight for those currently working empirically towards the development of new biotechnologies at lab-scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foot-and-mouth disease (FMD), a disease of cloven hooved animals caused by FMD virus (FMDV), is one of the most economically devastating diseases of livestock worldwide. The global burden of disease is borne largely by livestock-keepers in areas of Africa and Asia where the disease is endemic and where many people rely on livestock for their livelihoods and food-security. Yet, there are many gaps in our knowledge of the drivers of FMDV circulation in these settings. In East Africa, FMD epidemiology is complicated by the circulation of multiple FMDV serotypes (distinct antigenic variants) and by the presence of large populations of susceptible wildlife and domestic livestock. The African buffalo (Syncerus caffer) is the only wildlife species with consistent evidence of high levels of FMDV infection, and East Africa contains the largest population of this species globally. To inform FMD control in this region, key questions relate to heterogeneities in FMD prevalence and impacts in different livestock management systems and to the role of wildlife as a potential source of FMDV for livestock. To develop FMD control strategies and make best use of vaccine control options, serotype-specific patterns of circulation need to be characterised. In this study, the impacts and epidemiology of FMD were investigated across a range of traditional livestock-keeping systems in northern Tanzania, including pastoralist, agro-pastoralist and rural smallholder systems. Data were generated through field studies and laboratory analyses between 2010 and 2015. The study involved analysis of existing household survey data and generated serological data from cross-sectional livestock and buffalo samples and longitudinal cattle samples. Serological analyses included non-structural protein ELISAs, serotype-specific solid-phase competitive ELISAs, with optimisation to detect East African FMDV variants, and virus neutralisation testing. Risk factors for FMDV infection and outbreaks were investigated through analysis of cross-sectional serological data in conjunction with a case-control outbreak analysis. A novel Bayesian modeling approach was developed to infer serotype-specific infection history from serological data, and combined with virus isolation data from FMD outbreaks to characterise temporal and spatial patterns of serotype-specific infection. A high seroprevalence of FMD was detected in both northern Tanzanian livestock (69%, [66.5 - 71.4%] in cattle and 48.5%, [45.7-51.3%] in small ruminants) and in buffalo (80.9%, [74.7-86.1%]). Four different serotypes of FMDV (A, O, SAT1 and SAT2) were isolated from livestock. Up to three outbreaks per year were reported by households and active surveillance highlighted up to four serial outbreaks in the same herds within three years. Agro-pastoral and pastoral livestock keepers reported more frequent FMD outbreaks compared to smallholders. Households in all three management systems reported that FMD outbreaks caused significant impacts on milk production and sales, and on animals’ draught power, hence on crop production, with implications for food security and livelihoods. Risk factor analyses showed that older livestock were more likely to be seropositive for FMD (Odds Ratio [OR] 1.4 [1.4-1.5] per extra year) and that cattle (OR 3.3 [2.7-4.0]) were more likely than sheep and goats to be seropositive. Livestock managed by agro-pastoralists (OR 8.1 [2.8-23.6]) or pastoralists (OR 7.1 [2.9-17.6]) were more likely to be seropositive compared to those managed by smallholders. Larger herds (OR: 1.02 [1.01-1.03] per extra bovine) and those that recently acquired new livestock (OR: 5.57 [1.01 – 30.91]) had increased odds of suffering an FMD outbreak. Measures of potential contact with buffalo or with other FMD susceptible wildlife did not increase the likelihood of FMD in livestock in either the cross-sectional serological analysis or case-control outbreak analysis. The Bayesian model was validated to correctly infer from ELISA data the most recent serotype to infect cattle. Consistent with the lack of risk factors related to wildlife contact, temporal and spatial patterns of exposure to specific FMDV serotypes were not tightly linked in cattle and buffalo. In cattle, four serial waves of different FMDV serotypes that swept through southern Kenyan and northern Tanzanian livestock populations over a four-year period dominated infection patterns. In contrast, only two serotypes (SAT1 and SAT2) dominated in buffalo populations. Key conclusions are that FMD has a substantial impact in traditional livestock systems in East Africa. Wildlife does not currently appear to act as an important source of FMDV for East African livestock, and control efforts in the region should initially focus on livestock management and vaccination strategies. A novel modeling approach greatly facilitated the interpretation of serological data and may be a potent epidemiological tool in the African setting. There was a clear temporal pattern of FMDV antigenic dominance across northern Tanzania and southern Kenya. Longer-term research to investigate whether serotype-specific FMDV sweeps are truly predictable, and to shed light on FMD post-infection immunity in animals exposed to serial FMD infections is warranted.