2 resultados para Evolutionary optimization methods

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerable interest in renewable energy has increased in recent years due to the concerns raised over the environmental impact of conventional energy sources and their price volatility. In particular, wind power has enjoyed a dramatic global growth in installed capacity over the past few decades. Nowadays, the advancement of wind turbine industry represents a challenge for several engineering areas, including materials science, computer science, aerodynamics, analytical design and analysis methods, testing and monitoring, and power electronics. In particular, the technological improvement of wind turbines is currently tied to the use of advanced design methodologies, allowing the designers to develop new and more efficient design concepts. Integrating mathematical optimization techniques into the multidisciplinary design of wind turbines constitutes a promising way to enhance the profitability of these devices. In the literature, wind turbine design optimization is typically performed deterministically. Deterministic optimizations do not consider any degree of randomness affecting the inputs of the system under consideration, and result, therefore, in an unique set of outputs. However, given the stochastic nature of the wind and the uncertainties associated, for instance, with wind turbine operating conditions or geometric tolerances, deterministically optimized designs may be inefficient. Therefore, one of the ways to further improve the design of modern wind turbines is to take into account the aforementioned sources of uncertainty in the optimization process, achieving robust configurations with minimal performance sensitivity to factors causing variability. The research work presented in this thesis deals with the development of a novel integrated multidisciplinary design framework for the robust aeroservoelastic design optimization of multi-megawatt horizontal axis wind turbine (HAWT) rotors, accounting for the stochastic variability related to the input variables. The design system is based on a multidisciplinary analysis module integrating several simulations tools needed to characterize the aeroservoelastic behavior of wind turbines, and determine their economical performance by means of the levelized cost of energy (LCOE). The reported design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity. The presented technology is applied to the design of a 5-MW HAWT rotor to be used at sites of wind power density class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing the mean and standard deviation of the LCOE. Airfoil shapes, spanwise distributions of blade chord and twist, internal structural layup and rotor speed are optimized concurrently, subject to an extensive set of structural and aeroelastic constraints. The effectiveness of the multidisciplinary and robust design framework is demonstrated by showing that the probabilistically designed turbine achieves more favorable probabilistic performance than those of the initial baseline turbine and a turbine designed deterministically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagnosis of mixed genotype hepatitis C virus (HCV) infection is rare and information on incidence in the UK, where genotypes 1a and 3 are the most prevalent, is sparse. Considerable variations in the efficacies of direct-acting antivirals (DAAs) for the HCV genotypes have been documented and the ability of DAAs to treat mixed genotype HCV infections remains unclear, with the possibility that genotype switching may occur. In order to estimate the prevalence of mixed genotype 1a/3 infections in Scotland, a cohort of 512 samples was compiled and then screened using a genotype-specific nested PCR assay. Mixed genotype 1a/3 infections were found in 3.8% of samples tested, with a significantly higher prevalence rate of 6.7% (p<0.05) observed in individuals diagnosed with genotype 3 infections than genotype 1a (0.8%). An analysis of the samples using genotypic-specific qPCR assays found that in two-thirds of samples tested, the minor strain contributed <1% of the total viral load. The potential of deep sequencing methods for the diagnosis of mixed genotype infections was assessed using two pan-genotypic PCR assays compatible with the Illumina MiSeq platform that were developed targeting the E1-E2 and NS5B regions of the virus. The E1-E2 assay detected 75% of the mixed genotype infections, proving to be more sensitive than the NS5B assay which identified only 25% of the mixed infections. Studies of sequence data and linked patient records also identified significantly more neurological disorders in genotype 3 patients. Evidence of distinctive dinucleotide expression within the genotypes was also uncovered. Taken together these findings raise interesting questions about the evolutionary history of the virus and indicate that there is still more to understand about the different genotypes. In an era where clinical medicine is frequently more personalised, the development of diagnostic methods for HCV providing increased patient stratification is increasingly important. This project has shown that sequence-based genotyping methods can be highly discriminatory and informative, and their use should be encouraged in diagnostic laboratories. Mixed genotype infections were challenging to identify and current deep sequencing methods were not as sensitive or cost-effective as Sanger-based approaches in this study. More research is needed to evaluate the clinical prognosis of patients with mixed genotype infection and to develop clinical guidelines on their treatment.