3 resultados para Epstein-Barr virus induced gene 3"
em Glasgow Theses Service
Resumo:
Arboviruses (Arthropod-borne viruses) cause acute diseases that are increasingly affecting both human and animal health. Currently, there is a critical lack of understanding about the nature of arbovirus-host interactions in the lymph nodes (LNs), the place where the adaptive immune response is initiated and shaped. In this study, we used bluetongue virus (BTV) and its natural sheep host, to characterise the early events of an arbovirus infection with particular focus on the LNs. Our findings reveal a previously uncharacterized mechanism used by an arbovirus to manipulate host immunity. This study shows that BTV, similarly to other antigens delivered through the skin, is transported rapidly via the lymph to the peripheral lymph nodes. Here, BTV infects and disrupts the stromal network of marginal reticular cells and follicular dendritic cells composing the scaffolding of the follicular area. These cells contribute to antigen presentation and affinity maturation of B-cells for the production of antibodies. Consequently, we observed a loss of germinal centre structure, which hinders B-cell proliferation. This process results in a delayed production of high affinity and virus neutralizing antibodies that is directly related to the virulence of the BTV strain used and the severity of disease. Moreover the humoral immune response to a different antigen is also hampered in BTV-infected animals. Our data show that an arbovirus can evade the host antiviral responses by inducing an acute immunosuppression. Although transient, this immunosuppression occurs at the critical early stages of infection when a delayed host humoral immune response likely affects virus systemic dissemination and the clinical outcome of disease.
Resumo:
Cardiovascular diseases (CVDs) including, hypertension, coronary heart disease and heart failure are the leading cause of death worldwide. Hypertension, a chronic increase in blood pressure above 140/90 mmHg, is the single main contributor to deaths due to heart disease and stroke. In the heart, hypertension results in adaptive cardiac remodelling, including LV hypertrophy to normalize wall stress and maintain cardiac contractile function. However, chronic increases in BP results in the development of hypertensive heart disease (HHD). HHD describes the maladaptive changes during cardiac remodelling which result in reduced systolic and diastolic function and eventually heart failure. This includes ventricular dilation due to eccentric hypertrophy, cardiac fibrosis which stiffens the ventricular wall and microvascular rarefaction resulting in a decrease in coronary blood flow albeit an increase in energy demand. Chronic activation of the renin-angiotensin-system (RAS) with its effector peptide angiotensin (Ang)II plays a key role in the development of hypertension and the maladaptive changes in HHD. Ang II acts via the angiotensin type 1 receptor (AT1R) to mediate most of its pathological actions during HHD, including stimulation of cardiomyocyte hypertrophy, activation of cardiac fibroblasts and increased collagen deposition. The counter-regulatory axis of the RAS which is centred on the ACE2/Ang-(1-7)/Mas axis has been demonstrated to counteract the pathological actions of Ang II in the heart and vasculature. Ang-(1-7) via the Mas receptor prevents Ang II-induced cardiac hypertrophy and fibrosis and improves cardiac contractile function in animal models of HHD. In contrast, less is known about Ang-(1-9) although evidence has demonstrated that Ang-(1-9) also antagonises Ang II and is anti-hypertrophic and anti-fibrotic in animal models of acute cardiac remodelling. However, so far it is not well documented whether Ang-(1-9) can reverse established cardiac dysfunction and remodelling and whether it is beneficial when administered chronically. Therefore, the main aim of this thesis was to assess the effects of chronic Ang-(1-9) administration on cardiac structure and function in a model of Ang II-induced cardiac remodelling. Furthermore, this thesis aimed to investigate novel pathways contributing to the pathological remodelling in response to Ang II. First, a mouse model of chronic Ang II infusion was established and characterised by comparing the structural and functional effects of the infusion of a low and high dose of Ang II after 6 weeks. Echocardiographic measurements demonstrated that low dose Ang II infusion resulted in a gradual decline in cardiac function while a high dose of Ang II induced acute cardiac contractile dysfunction. Both doses equally induced the development of cardiac hypertrophy and cardiac fibrosis characterised by an increase in the deposition of collagen I and collagen III. Moreover, increases in gene expression of fibrotic and hypertrophic markers could be detected following high dose Ang II infusion over 6 weeks. Following this characterisation, the high dose infusion model was used to assess the effects of Ang-(1-9) on cardiac structural and functional remodelling in established disease. Initially, it was evaluated whether Ang-(1-9) can reverse Ang II-induced cardiac disease by administering Ang-(1-9) for 2-4 weeks following an initial 2 week infusion of a high dose of Ang II to induce cardiac contractile dysfunction. The infusion of Ang-(1-9) for 2 weeks was associated with a significant improvement of LV fractional shortening compared to Ang II infusion. However, after 4 weeks fractional shortening declined to Ang II levels. Despite the transient improvement in cardiac contractile function, Ang-(1-9) did not modulate blood pressure, LV hypertrophy or cardiac fibrosis. To further investigate the direct cardiac effects of Ang-(1-9), cardiac contractile performance in response to Ang-(1-9) was evaluated in the isolated Langendorff-perfused rat heart. Perfusion of Ang-(1-9) in the paced and spontaneously beating rat heart mediated a positive inotropic effect characterised by an increase in LV developed pressure, cardiac contractility and relaxation. This was in contrast to Ang II and Ang-(1-7). Furthermore, the positive inotropic effect to Ang-(1-9) was blocked by the AT1R antagonist losartan and the protein kinase A inhibitor H89. Next, endothelial-to-mesenchymal transition (EndMT) as a novel pathway that may contribute to Ang II-induced cardiac remodelling was assessed in Ang II-infused mice in vivo and in human coronary artery endothelial cells (HCAEC) in vitro. Infusion of Ang II to mice for 2-6 weeks resulted in a significant decrease in myocardial capillary density and this was associated with the occurrence of dual labelling of endothelial cells for endothelial and mesenchymal markers. In vitro stimulation of HCAEC with TGFβ and Ang II revealed that Ang II exacerbated TGF-induced gene expression of mesenchymal markers. This was not correlated with any changes in SMAD2 or ERK1/2 phosphorylation with co-stimulation of TGFβ and Ang II. However, superoxide production was significantly increased in HCAEC stimulated with Ang II but not TGFβ. Finally, the role of Ang II in microvesicle (MV)-mediated cardiomyocyte hypertrophy was investigated. MVs purified from neonatal rat cardiac fibroblasts were found to contain detectable Ang II and this was increased by stimulation of fibroblasts with Ang II. Treatment of cardiomyocytes with MVs derived from Ang II-stimulated fibroblasts induced cardiomyocyte hypertrophy which could be blocked by the AT1R antagonist losartan and an inhibitor of MV synthesis and release brefeldin A. Furthermore, Ang II was found to be present in MVs isolated from serum and plasma of Ang II-infused mice and SHRSP and WKY rats. Overall, the findings of this thesis demonstrate for the first time that the actions of Ang-(1-9) in cardiac pathology are dependent on its time of administration and that Ang-(1-9) can reverse Ang II-induced cardiac contractile dysfunction by acting as a positive inotrope. Furthermore, this thesis demonstrates evidence for an involvement of EndMT and MV signalling as novel pathways contributing to Ang II-induced cardiac fibrosis and hypertrophy, respectively. These findings provide incentive to further investigate the therapeutic potential of Ang-(1-9) in the treatment of cardiac contractile dysfunction in heart disease, establish the importance of novel pathways in Ang II-mediated cardiac remodelling and evaluate the significance of the presence of Ang II in plasma-derived MVs.
Resumo:
Endemic zoonotic diseases remain a serious but poorly recognised problem in affected communities in developing countries. Despite the overall burden of zoonoses on human and animal health, information about their impacts in endemic settings is lacking and most of these diseases are continuously being neglected. The non-specific clinical presentation of these diseases has been identified as a major challenge in their identification (even with good laboratory diagnosis), and control. The signs and symptoms in animals and humans respectively, are easily confused with other non-zoonotic diseases, leading to widespread misdiagnosis in areas where diagnostic capacity is limited. The communities that are mostly affected by these diseases live in close proximity with their animals which they depend on for livelihood, which further complicates the understanding of the epidemiology of zoonoses. This thesis reviewed the pattern of reporting of zoonotic pathogens that cause febrile illness in malaria endemic countries, and evaluates the recognition of animal associations among other risk factors in the transmission and management of zoonoses. The findings of the review chapter were further investigated through a laboratory study of risk factors for bovine leptospirosis, and exposure patterns of livestock coxiellosis in the subsequent chapters. A review was undertaken on 840 articles that were part of a bigger review of zoonotic pathogens that cause human fever. The review process involves three main steps: filtering and reference classification, identification of abstracts that describe risk factors, and data extraction and summary analysis of data. Abstracts of the 840 references were transferred into a Microsoft excel spread sheet, where several subsets of abstracts were generated using excel filters and text searches to classify the content of each abstract. Data was then extracted and summarised to describe geographical patterns of the pathogens reported, and determine the frequency animal related risk factors were considered among studies that investigated risk factors for zoonotic pathogen transmission. Subsequently, a seroprevalence study of bovine leptospirosis in northern Tanzania was undertaken in the second chapter of this thesis. The study involved screening of serum samples, which were obtained from an abattoir survey and cross-sectional study (Bacterial Zoonoses Project), for antibodies against Leptospira serovar Hardjo. The data were analysed using generalised linear mixed models (GLMMs), to identify risk factors for cattle infection. The final chapter was the analysis of Q fever data, which were also obtained from the Bacterial Zoonoses Project, to determine exposure patterns across livestock species using generalized linear mixed models (GLMMs). Leptospira spp. (10.8%, 90/840) and Rickettsia spp. (10.7%, 86/840) were identified as the most frequently reported zoonotic pathogens that cause febrile illness, while Rabies virus (0.4%, 3/840) and Francisella spp. (0.1%, 1/840) were least reported, across malaria endemic countries. The majority of the pathogens were reported in Asia, and the frequency of reporting seems to be higher in areas where outbreaks are mostly reported. It was also observed that animal related risk factors are not often considered among other risk factors for zoonotic pathogens that cause human fever in malaria endemic countries. The seroprevalence study indicated that Leptospira serovar Hardjo is widespread in cattle population in northern Tanzania, and animal husbandry systems and age are the two most important risk factors that influence seroprevalence. Cattle in the pastoral systems and adult cattle were significantly more likely to be seropositive compared to non-pastoral and young animals respectively, while there was no significant effect of cattle breed or sex. Exposure patterns of Coxiella burnetii appear different for each livestock species. While most risk factors were identified for goats (such as animal husbandry systems, age and sex) and sheep (animal husbandry systems and sex), there were none for cattle. In addition, there was no evidence of a significant influence of mixed livestock-keeping on animal coxiellosis. Zoonotic agents that cause human fever are common in developing countries. The role of animals in the transmission of zoonotic pathogens that cause febrile illness is not fully recognised and appreciated. Since Leptospira spp. and C. burnetii are among the most frequently reported pathogens that cause human fever across malaria endemic countries, and are also prevalent in livestock population, control and preventive measures that recognise animals as source of infection would be very important especially in livestock-keeping communities where people live in close proximity with their animals.