5 resultados para Epidemiological data
em Glasgow Theses Service
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in equine veterinary practice. These drugs exert their effect by inhibiting cyclooxygenase (COX) enzymes, which control prostaglandin production, a major regulator of tissue perfusion. Two isoforms of COX enzymes exist: COX-1 is physiologically present in tissues, while COX-2 is up-regulated during inflammation and has been indicated as responsible for the negative effects of an inflammatory response. Evidence suggests that NSAIDs that inhibit only COX-2, preserving the physiological function of COX-1 might have a safer profile. Studies that evaluate the effect of NSAIDs on COX enzymes are all performed under experimental conditions and none uses actual clinical patients. The biochemical investigations in this work focus on describing the effect on COX enzymes activity of flunixin meglumine and phenylbutazone, two non-selective COX inhibitors and firocoxib, a COX-2 selective inhibitor, in clinical patients undergoing elective surgery. A separate epidemiological investigation was aimed at describing the impact that the findings of biochemical data have on a large population of equids. Electronic medical records (EMRs) from 454,153 equids were obtained from practices in the United Kingdom, United States of America and Canada. Information on prevalence and indications for NSAIDs use was extracted from the EMRs via a text mining technique, improved from the literature and described and validated within this Thesis. Further the prevalence of a clinical sign compatible with NSAID toxicity, such as diarrhoea, is reported along with analysis evaluating NSAID administration in light of concurrent administration of other drugs and comorbidities. This work confirms findings from experimental settings that NSAIDs firocoxib is COX-2 selective and that flunixin meglumine and phenylbutazone are non-selective COX inhibitors and therefore their administration carries a greater risk of toxicity. However the impact of this finding needs to be interpreted with caution as epidemiological data suggest that the prevalence of toxicity is in fact small and the use of these drugs at the labelled dose is quite safe.
Resumo:
Abstract and Summary of Thesis: Background: Individuals with Major Mental Illness (such as schizophrenia and bipolar disorder) experience increased rates of physical health comorbidity compared to the general population. They also experience inequalities in access to certain aspects of healthcare. This ultimately leads to premature mortality. Studies detailing patterns of physical health comorbidity are limited by their definitions of comorbidity, single disease approach to comorbidity and by the study of heterogeneous groups. To date the investigation of possible sources of healthcare inequalities experienced by individuals with Major Mental Illness (MMI) is relatively limited. Moreover studies detailing the extent of premature mortality experienced by individuals with MMI vary both in terms of the measure of premature mortality reported and age of the cohort investigated, limiting their generalisability to the wider population. Therefore local and national data can be used to describe patterns of physical health comorbidity, investigate possible reasons for health inequalities and describe mortality rates. These findings will extend existing work in this area. Aims and Objectives: To review the relevant literature regarding: patterns of physical health comorbidity, evidence for inequalities in physical healthcare and evidence for premature mortality for individuals with MMI. To examine the rates of physical health comorbidity in a large primary care database and to assess for evidence for inequalities in access to healthcare using both routine primary care prescribing data and incentivised national Quality and Outcome Framework (QOF) data. Finally to examine the rates of premature mortality in a local context with a particular focus on cause of death across the lifespan and effect of International Classification of Disease Version 10 (ICD 10) diagnosis and socioeconomic status on rates and cause of death. Methods: A narrative review of the literature surrounding patterns of physical health comorbidity, the evidence for inequalities in physical healthcare and premature mortality in MMI was undertaken. Rates of physical health comorbidity and multimorbidity in schizophrenia and bipolar disorder were examined using a large primary care dataset (Scottish Programme for Improving Clinical Effectiveness in Primary Care (SPICE)). Possible inequalities in access to healthcare were investigated by comparing patterns of prescribing in individuals with MMI and comorbid physical health conditions with prescribing rates in individuals with physical health conditions without MMI using SPICE data. Potential inequalities in access to health promotion advice (in the form of smoking cessation) and prescribing of Nicotine Replacement Therapy (NRT) were also investigated using SPICE data. Possible inequalities in access to incentivised primary healthcare were investigated using National Quality and Outcome Framework (QOF) data. Finally a pre-existing case register (Glasgow Psychosis Clinical Information System (PsyCIS)) was linked to Scottish Mortality data (available from the Scottish Government Website) to investigate rates and primary cause of death in individuals with MMI. Rate and primary cause of death were compared to the local population and impact of age, socioeconomic status and ICD 10 diagnosis (schizophrenia vs. bipolar disorder) were investigated. Results: Analysis of the SPICE data found that sixteen out of the thirty two common physical comorbidities assessed, occurred significantly more frequently in individuals with schizophrenia. In individuals with bipolar disorder fourteen occurred more frequently. The most prevalent chronic physical health conditions in individuals with schizophrenia and bipolar disorder were: viral hepatitis (Odds Ratios (OR) 3.99 95% Confidence Interval (CI) 2.82-5.64 and OR 5.90 95% CI 3.16-11.03 respectively), constipation (OR 3.24 95% CI 3.01-3.49 and OR 2.84 95% CI 2.47-3.26 respectively) and Parkinson’s disease (OR 3.07 95% CI 2.43-3.89 and OR 2.52 95% CI 1.60-3.97 respectively). Both groups had significantly increased rates of multimorbidity compared to controls: in the schizophrenia group OR for two comorbidities was 1.37 95% CI 1.29-1.45 and in the bipolar disorder group OR was 1.34 95% CI 1.20-1.49. In the studies investigating inequalities in access to healthcare there was evidence of: under-recording of cardiovascular-related conditions for example in individuals with schizophrenia: OR for Atrial Fibrillation (AF) was 0.62 95% CI 0.52 - 0.73, for hypertension 0.71 95% CI 0.67 - 0.76, for Coronary Heart Disease (CHD) 0.76 95% CI 0.69 - 0.83 and for peripheral vascular disease (PVD) 0.83 95% CI 0.72 - 0.97. Similarly in individuals with bipolar disorder OR for AF was 0.56 95% CI 0.41-0.78, for hypertension 0.69 95% CI 0.62 - 0.77 and for CHD 0.77 95% CI 0.66 - 0.91. There was also evidence of less intensive prescribing for individuals with schizophrenia and bipolar disorder who had comorbid hypertension and CHD compared to individuals with hypertension and CHD who did not have schizophrenia or bipolar disorder. Rate of prescribing of statins for individuals with schizophrenia and CHD occurred significantly less frequently than in individuals with CHD without MMI (OR 0.67 95% CI 0.56-0.80). Rates of prescribing of 2 or more anti-hypertensives were lower in individuals with CHD and schizophrenia and CHD and bipolar disorder compared to individuals with CHD without MMI (OR 0.66 95% CI 0.56-0.78 and OR 0.55 95% CI 0.46-0.67, respectively). Smoking was more common in individuals with MMI compared to individuals without MMI (OR 2.53 95% CI 2.44-2.63) and was particularly increased in men (OR 2.83 95% CI 2.68-2.98). Rates of ex-smoking and non-smoking were lower in individuals with MMI (OR 0.79 95% CI 0.75-0.83 and OR 0.50 95% CI 0.48-0.52 respectively). However recorded rates of smoking cessation advice in smokers with MMI were significantly lower than the recorded rates of smoking cessation advice in smokers with diabetes (88.7% vs. 98.0%, p<0.001), smokers with CHD (88.9% vs. 98.7%, p<0.001) and smokers with hypertension (88.3% vs. 98.5%, p<0.001) without MMI. The odds ratio of NRT prescription was also significantly lower in smokers with MMI without diabetes compared to smokers with diabetes without MMI (OR 0.75 95% CI 0.69-0.81). Similar findings were found for smokers with MMI without CHD compared to smokers with CHD without MMI (OR 0.34 95% CI 0.31-0.38) and smokers with MMI without hypertension compared to smokers with hypertension without MMI (OR 0.71 95% CI 0.66-0.76). At a national level, payment and population achievement rates for the recording of body mass index (BMI) in MMI was significantly lower than the payment and population achievement rates for BMI recording in diabetes throughout the whole of the UK combined: payment rate 92.7% (Inter Quartile Range (IQR) 89.3-95.8 vs. 95.5% IQR 93.3-97.2, p<0.001 and population achievement rate 84.0% IQR 76.3-90.0 vs. 92.5% IQR 89.7-94.9, p<0.001 and for each country individually: for example in Scotland payment rate was 94.0% IQR 91.4-97.2 vs. 96.3% IQR 94.3-97.8, p<0.001. Exception rate was significantly higher for the recording of BMI in MMI than the exception rate for BMI recording in diabetes for the UK combined: 7.4% IQR 3.3-15.9 vs. 2.3% IQR 0.9-4.7, p<0.001 and for each country individually. For example in Scotland exception rate in MMI was 11.8% IQR 5.4-19.3 compared to 3.5% IQR 1.9-6.1 in diabetes. Similar findings were found for Blood Pressure (BP) recording: across the whole of the UK payment and population achievement rates for BP recording in MMI were also significantly reduced compared to payment and population achievement rates for the recording of BP in chronic kidney disease (CKD): payment rate: 94.1% IQR 90.9-97.1 vs.97.8% IQR 96.3-98.9 and p<0.001 and population achievement rate 87.0% IQR 81.3-91.7 vs. 97.1% IQR 95.5-98.4, p<0.001. Exception rates again were significantly higher for the recording of BP in MMI compared to CKD (6.4% IQR 3.0-13.1 vs. 0.3% IQR 0.0-1.0, p<0.001). There was also evidence of differences in rates of recording of BMI and BP in MMI across the UK. BMI and BP recording in MMI were significantly lower in Scotland compared to England (BMI:-1.5% 99% CI -2.7 to -0.3%, p<0.001 and BP: -1.8% 99% CI -2.7 to -0.9%, p<0.001). While rates of BMI and BP recording in diabetes and CKD were similar in Scotland compared to England (BMI: -0.5 99% CI -1.0 to 0.05, p=0.004 and BP: 0.02 99% CI -0.2 to 0.3, p=0.797). Data from the PsyCIS cohort showed an increase in Standardised Mortality Ratios (SMR) across the lifespan for individuals with MMI compared to the local Glasgow and wider Scottish populations (Glasgow SMR 1.8 95% CI 1.6-2.0 and Scotland SMR 2.7 95% CI 2.4-3.1). Increasing socioeconomic deprivation was associated with an increased overall rate of death in MMI (350.3 deaths/10,000 population/5 years in the least deprived quintile compared to 794.6 deaths/10,000 population/5 years in the most deprived quintile). No significant difference in rate of death for individuals with schizophrenia compared with bipolar disorder was reported (6.3% vs. 4.9%, p=0.086), but primary cause of death varied: with higher rates of suicide in individuals with bipolar disorder (22.4% vs. 11.7%, p=0.04). Discussion: Local and national datasets can be used for epidemiological study to inform local practice and complement existing national and international studies. While the strengths of this thesis include the large data sets used and therefore their likely representativeness to the wider population, some limitations largely associated with using secondary data sources are acknowledged. While this thesis has confirmed evidence of increased physical health comorbidity and multimorbidity in individuals with MMI, it is likely that these findings represent a significant under reporting and likely under recognition of physical health comorbidity in this population. This is likely due to a combination of patient, health professional and healthcare system factors and requires further investigation. Moreover, evidence of inequality in access to healthcare in terms of: physical health promotion (namely smoking cessation advice), recording of physical health indices (BMI and BP), prescribing of medications for the treatment of physical illness and prescribing of NRT has been found at a national level. While significant premature mortality in individuals with MMI within a Scottish setting has been confirmed, more work is required to further detail and investigate the impact of socioeconomic deprivation on cause and rate of death in this population. It is clear that further education and training is required for all healthcare staff to improve the recognition, diagnosis and treatment of physical health problems in this population with the aim of addressing the significant premature mortality that is seen. Conclusions: Future work lies in the challenge of designing strategies to reduce health inequalities and narrow the gap in premature mortality reported in individuals with MMI. Models of care that allow a much more integrated approach to diagnosing, monitoring and treating both the physical and mental health of individuals with MMI, particularly in areas of social and economic deprivation may be helpful. Strategies to engage this “hard to reach” population also need to be developed. While greater integration of psychiatric services with primary care and with specialist medical services is clearly vital the evidence on how best to achieve this is limited. While the National Health Service (NHS) is currently undergoing major reform, attention needs to be paid to designing better ways to improve the current disconnect between primary and secondary care. This should then help to improve physical, psychological and social outcomes for individuals with MMI.
Resumo:
It has been proposed that long-term consumption of diets rich in non-digestible carbohydrates (NDCs), such as cereals, fruit and vegetables might protect against several chronic diseases, however, it has been difficult to fully establish their impact on health in epidemiology studies. The wide range properties of the different NDCs may dilution their impact when they are combined in one category for statistical comparisons in correlations or multivariate analysis. Several mechanisms have been suggested to explain the protective effects of NDCs, including increased stool bulk, dilution of carcinogens in the colonic lumen, reduced transit time, lowering pH, and bacterial fermentation to short chain fatty acids (SCFA) in the colon. However, it is very difficult to measure SCFA in humans in vivo with any accuracy, so epidemiological studies on the impact of SCFA are not feasible. Most studies use dietary fibre (DF) or Non-Starch Polysaccharides (NSP) intake to estimate the levels, but not all fibres or NSP are equally fermentable. It has been proposed that long-term consumption of diets rich in non-digestible carbohydrates (NDCs), such as cereals, fruit and vegetables might protect against several chronic diseases, however, it has been difficult to fully establish their impact on health in epidemiology studies. The wide range properties of the different NDCs may dilution their impact when they are combined in one category for statistical comparisons in correlations or multivariate analysis. Several mechanisms have been suggested to explain the protective effects of NDCs, including increased stool bulk, dilution of carcinogens in the colonic lumen, reduced transit time, lowering pH, and bacterial fermentation to short chain fatty acids (SCFA) in the colon. However, it is very difficult to measure SCFA in humans in vivo with any accuracy, so epidemiological studies on the impact of SCFA are not feasible. Most studies use dietary fibre (DF) or Non-Starch Polysaccharides (NSP) intake to estimate the levels, but not all fibres or NSP are equally fermentable. The first aim of this thesis was the development of the equations used to estimate the amount of FC that reaches the human colon and is fermented fully to SCFA by the colonic bacteria. Therefore, several studies were examined for evidence to determine the different percentages of each type of NDCs that should be included in the final model, based on how much NDCs entered the colon intact and also to what extent they were fermented to SCFA in vivo. Our model equations are FC-DF or NSP$ 1: 100 % Soluble + 10 % insoluble + 100 % NDOs¥ + 5 % TS** FC-DF or NSP 2: 100 % Soluble + 50 % insoluble + 100 % NDOs + 5 % TS FC-DF* or NSP 3: 100 % Soluble + 10 % insoluble + 100 % NDOs + 10 % TS FC-DF or NSP 4: 100 % Soluble + 50 % insoluble + 100 % NDOs + 10 % TS *DF: Dietary fibre; **TS: Total starch; $NSP: non-starch polysaccharide; ¥NDOs: non-digestible oligosaccharide The second study of this thesis aimed to examine all four predicted FC-DF and FC-NSP equations developed, to estimate FC from dietary records against urinary colonic NDCs fermentation biomarkers. The main finding of a cross-sectional comparison of habitual diet with urinary excretion of SCFA products, showed weak but significant correlation between the 24 h urinary excretion of SCFA and acetate with the estimated FC-DF 4 and FC-NSP 4 when considering all of the study participants (n = 122). Similar correlations were observed with the data for valid participants (n = 78). It was also observed that FC-DF and FC-NSP had positive correlations with 24 h urinary acetate and SCFA compared with DF and NSP alone. Hence, it could be hypothesised that using the developed index to estimate FC in the diet form dietary records, might predict SCFA production in the colon in vivo in humans. The next study in this thesis aimed to validate the FC equations developed using in vitro models of small intestinal digestion and human colon fermentation. The main findings in these in vitro studies were that there were several strong agreements between the amounts of SCFA produced after actual in vitro fermentation of single fibre and different mixtures of NDCs, and those predicted by the estimated FC from our developed equation FC-DF 4. These results which demonstrated a strong relationship between SCFA production in vitro from a range of fermentations of single fibres and mixtures of NDCs and that from the predicted FC equation, support the use of the FC equation for estimation of FC from dietary records. Therefore, we can conclude that the newly developed predicted equations have been deemed a valid and practical tool to assess SCFA productions for in vitro fermentation.
Resumo:
The under-reporting of cases of infectious diseases is a substantial impediment to the control and management of infectious diseases in both epidemic and endemic contexts. Information about infectious disease dynamics can be recovered from sequence data using time-varying coalescent approaches, and phylodynamic models have been developed in order to reconstruct demographic changes of the numbers of infected hosts through time. In this study I have demonstrated the general concordance between empirically observed epidemiological incidence data and viral demography inferred through analysis of foot-and-mouth disease virus VP1 coding sequences belonging to the CATHAY topotype over large temporal and spatial scales. However a more precise and robust relationship between the effective population size (
Resumo:
The PARABAN project has been a Scotland-wide initiative to develop and deliver farm-specific ‘best practice’ for the control of Mycobacterium avium ssp. paratuberculosis (MAP) in cattle using ‘Knowledge Exchange’. A range of partners have been involved, including nine ‘Champion Farms’. With input from the farmer, his/her vet and PARABAN advisors, a tailored monitoring and control programme was devised for each ‘Champion Farm’, taking into account the history of the disease on the farm, the physical facilities available and farmer objectives. Culling decisions based on live animal test results were incorporated into each farm-specific programme to complement the management programme already in place to maintain each herd. Results were analysed and discussed with all the partners throughout the project and then offered for wider scrutiny at farm open days. Feedback and questions from these open days have been used to complete the ‘Knowledge Exchange’ cycle. As a major component of the PARABAN project the author collected samples from all adult animals culled from ‘Champion Farms’ at slaughter or as fallen stock, irrespective of in-life MAP test status. These were then subjected to histopathological examination by experienced veterinary pathologists and the results compared with the results from in-life MAP testing. This was intended to evaluate the contribution slaughterhouse sampling could make towards decision making for disease control on farm and formed the main aim of this thesis. In total, samples of terminal ileum and draining lymph node were collected from three-hundred and fifty-two animals. A positive result on histopathology was defined as the presence of lesions typical of MAP and also the presence of acid-fast bacteria within the sections. There was found to be fair agreement between the overall results from histopathology and serum ELISA (Kappa = 0.33), though there appeared to be some variation in agreement between the tests on the individual ‘Champion Farms’. The presence of MAP was confirmed in seven of the eight farms which contributed animals to this study, despite sometimes prolonged efforts at controlling the disease. A separate study was undertaken to make use of the archives of the Scottish Centre for Production Animal Health and Food Safety at the Veterinary School, University of Glasgow. The archive contained records of cases from across southern Scotland and northern England. Analysis of the data generated from examination of these records suggested that MAP is widespread within the Scottish cattle herd and may well be increasing