2 resultados para Elementary shortest path with resource constraints
em Glasgow Theses Service
Resumo:
The aim of this study was to model the process of development for an Online Learning Resource (OLR) by Health Care Professionals (HCPs) to meet lymphoedema-related educational needs, within an asset-based management context. Previous research has shown that HCPs have unmet educational needs in relation to lymphoedema but details on their specific nature or context were lacking. Against this background, the study was conducted in two distinct but complementary phases. In Phase 1, a national survey was conducted of HCPs predominantly in community, oncology and palliative care services, followed by focus group discussions with a sample of respondents. In Phase 2, lymphoedema specialists (LSs) used an action research approach to design and implement an OLR to meet the needs identified in Phase 1. Study findings were analysed using descriptive statistics (Phase 1), and framework, thematic and dialectic analysis to explore their potential to inform future service development and education theory. Unmet educational need was found to be specific to health care setting and professional group. These resulted in HCPs feeling poorly-equipped to diagnose and manage lymphoedema. Of concern, when identified, lymphoedema was sometimes buried for fear of overwhelming stretched services. An OLR was identified as a means of addressing the unmet educational needs. This was successfully developed and implemented with minimal additional resources. The process model created has the potential to inform contemporary leadership theory in asset-based management contexts. This doctoral research makes a timely contribution to leadership theory since the resource constraints underpinning much of the contribution has salience to current public services. The process model created has the potential to inform contemporary leadership theory in asset-based management contexts. Further study of a leadership style which incorporates cognisance of Cognitive Load Theory and Self-Determination Theory is suggested. In addition, the detailed reporting of process and how this facilitated learning for participants contributes to workplace education theory
Resumo:
The Internet has grown in size at rapid rates since BGP records began, and continues to do so. This has raised concerns about the scalability of the current BGP routing system, as the routing state at each router in a shortest-path routing protocol will grow at a supra-linearly rate as the network grows. The concerns are that the memory capacity of routers will not be able to keep up with demands, and that the growth of the Internet will become ever more cramped as more and more of the world seeks the benefits of being connected. Compact routing schemes, where the routing state grows only sub-linearly relative to the growth of the network, could solve this problem and ensure that router memory would not be a bottleneck to Internet growth. These schemes trade away shortest-path routing for scalable memory state, by allowing some paths to have a certain amount of bounded “stretch”. The most promising such scheme is Cowen Routing, which can provide scalable, compact routing state for Internet routing, while still providing shortest-path routing to nearly all other nodes, with only slightly stretched paths to a very small subset of the network. Currently, there is no fully distributed form of Cowen Routing that would be practical for the Internet. This dissertation describes a fully distributed and compact protocol for Cowen routing, using the k-core graph decomposition. Previous compact routing work showed the k-core graph decomposition is useful for Cowen Routing on the Internet, but no distributed form existed. This dissertation gives a distributed k-core algorithm optimised to be efficient on dynamic graphs, along with with proofs of its correctness. The performance and efficiency of this distributed k-core algorithm is evaluated on large, Internet AS graphs, with excellent results. This dissertation then goes on to describe a fully distributed and compact Cowen Routing protocol. This protocol being comprised of a landmark selection process for Cowen Routing using the k-core algorithm, with mechanisms to ensure compact state at all times, including at bootstrap; a local cluster routing process, with mechanisms for policy application and control of cluster sizes, ensuring again that state can remain compact at all times; and a landmark routing process is described with a prioritisation mechanism for announcements that ensures compact state at all times.