2 resultados para Electronic Devices and Semiconductor Manufacturing

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developments in theory and experiment have raised the prospect of an electronic technology based on the discrete nature of electron tunnelling through a potential barrier. This thesis deals with novel design and analysis tools developed to study such systems. Possible devices include those constructed from ultrasmall normal tunnelling junctions. These exhibit charging effects including the Coulomb blockade and correlated electron tunnelling. They allow transistor-like control of the transfer of single carriers, and present the prospect of digital systems operating at the information theoretic limit. As such, they are often referred to as single electronic devices. Single electronic devices exhibit self quantising logic and good structural tolerance. Their speed, immunity to thermal noise, and operating voltage all scale beneficially with junction capacitance. For ultrasmall junctions the possibility of room temperature operation at sub picosecond timescales seems feasible. However, they are sensitive to external charge; whether from trapping-detrapping events, externally gated potentials, or system cross-talk. Quantum effects such as charge macroscopic quantum tunnelling may degrade performance. Finally, any practical system will be complex and spatially extended (amplifying the above problems), and prone to fabrication imperfection. This summarises why new design and analysis tools are required. Simulation tools are developed, concentrating on the basic building blocks of single electronic systems; the tunnelling junction array and gated turnstile device. Three main points are considered: the best method of estimating capacitance values from physical system geometry; the mathematical model which should represent electron tunnelling based on this data; application of this model to the investigation of single electronic systems. (DXN004909)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.