2 resultados para Electric insulators and insulation

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalised refraction is a topic which has, thus far, garnered far less attention than it deserves. The purpose of this thesis is to highlight the potential that generalised refraction has to offer with regards to imaging and its application to designing new passive optical devices. Specifically in this thesis we will explore two types of gener- alised refraction which takes place across a planar interface: refraction by generalised confocal lenslet arrays (gCLAs), and refraction by ray-rotation sheets. We will show that the corresponding laws of refraction for these interfaces produce, in general, light-ray fields with non-zero curl, and as such do not have a corresponding outgoing waveform. We will then show that gCLAs perform integral, geometrical imaging, and that this enables them to be considered as approximate realisations of metric tensor interfaces. The concept of piecewise transformation optics will be introduced and we will show that it is possible to use gCLAs along with other optical elements such as lenses to design simple piecewise transformation-optics devices such as invisibility cloaks and insulation windows. Finally, we shall show that ray-rotation sheets can be interpreted as performing geometrical imaging into complex space, and that as a consequence, ray-rotation sheets and gCLAs may in fact be more closely related than first realised. We conclude with a summary of potential future projects which lead naturally from the results of this thesis.