2 resultados para Efficient Synthesis
em Glasgow Theses Service
Resumo:
In the first chapter of this thesis, published works found in the literature about hexacyclinic acid and FR182877 are reported and commented. A quick summary of the previous work done in the Prunet group is also described. In the second and third chapter, a more detailed account of the work undertaken during this PhD was given. Firstly, syntheses of two ABC tricycles incorporating tert-butyl and (trimethylsilyl)ethyl esters were undertaken. These syntheses include two key steps previously developed in the group, a diastereoselective Michael addition and a Snider cyclisation. Multiple conditions for the hydrolysis of the esters were attempted but none of them gave the desired product. The main part of this work is focused on the synthesis of a CDEF model and in particular about the development of the key step, the formation of a nine-membered ring. Several DEF fragments were synthesised in short synthetic sequences and as single isomers. Six different synthetic pathways were developed in total and a novel method, a Michael/elimination reaction, was found to be a very efficient way to close the desired medium-size ring. From the nine-membered ring, regioselective reduction and palladiumcatalysed allylic substitution led to the formation of the CDF tricycle. Final steps of the synthesis were fruitless and led only to decomposition. A synthesis of a chiral C-ring was also developed during this PhD. II Finally, another project was undertaken, not related to hexacyclinic acid. Methodology developed in the group for the diastereoselective formation of trisubstituted alkenes employing a temporary silicon-tethered ring-closing metathesis was extended to homoallylic alcohols. The first steps of the method were similar to the previous methodology but the end-game had to be modified in favour of an oxidation/reduction sequence to successfully obtain the desired products with the correct geometry. In the fourth chapter, procedures and analytical data for the synthesised compounds previously described are reported.
Resumo:
Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.