2 resultados para Developmental origins of health and disease
em Glasgow Theses Service
Resumo:
Leptospirosis is an important but neglected zoonotic disease that is often overlooked in Africa. Although comprehensive data on the incidence of human disease are lacking, robust evidence of infection has been demonstrated in people and animals from all regions of the continent. However, to date, there are few examples of direct epidemiological linkages between human disease and animal infection. In East Africa, awareness of the importance of human leptospirosis as a cause of non-malarial febrile illness is growing. In northern Tanzania, acute leptospirosis has been diagnosed in 9% of patients with severe febrile illness compared to only 2% with malaria. However, little is known about the relative importance of different potential animal hosts as sources of human infection in this area. This project was established to investigate the roles of rodents and ruminant livestock, important hosts of Leptospira in other settings, in the epidemiology of leptospirosis in northern Tanzania. A cross-sectional survey of rodents living in and around human settlements was performed alongside an abattoir survey of ruminant livestock. Unusual patterns of animal infection were detected by real-time PCR detection. Renal Leptospira infection was absent from rodents but was detected in cattle from several geographic areas. Infection was demonstrated for the first time in small ruminants sub-Saharan Africa. Two major Leptospira species and a novel Leptospira genotype were detected in livestock. L. borgpetersenii was seen only in cattle but L. kirschneri infection was detected in multiple livestock species (cattle, sheep and goats), suggesting that at least two distinct patterns of Leptospira infection occur in livestock in northern Tanzania. Analysis of samples from acute leptospirosis in febrile human patients could not detect Leptospira DNA by real-time PCR but identified social and behavioural factors that may limit the utility of acute-phase diagnostic tests in this community. Analysis of serological data revealed considerable overlap between serogroups detected in cattle and human leptospirosis cases. Human disease was most commonly attributed to the serogroups Mini and Australis, which were also predominant reactive serogroups in cattle. Collectively, the results of this study led to the hypothesis that livestock are an important reservoir of Leptospira infection for people in northern Tanzania. These results also challenge our understanding of the relationship between Leptospira and common invasive rodent species, which do not appear to maintain infection in this setting. Livestock Leptospira infection has substantial potential to affect the well-being of people in East Africa, through direct transmission of infection or through indirect effects on food production and economic security. Further research is needed to quantify the impact of livestock leptospirosis in Africa and to develop effective interventions for the control of human and animal disease.
Resumo:
Background: Body composition is affected by diseases, and affects responses to medical treatments, dosage of medicines, etc., while an abnormal body composition contributes to the causation of many chronic diseases. While we have reliable biochemical tests for certain nutritional parameters of body composition, such as iron or iodine status, and we have harnessed nuclear physics to estimate the body’s content of trace elements, the very basic quantification of body fat content and muscle mass remains highly problematic. Both body fat and muscle mass are vitally important, as they have opposing influences on chronic disease, but they have seldom been estimated as part of population health surveillance. Instead, most national surveys have merely reported BMI and waist, or sometimes the waist/hip ratio; these indices are convenient but do not have any specific biological meaning. Anthropometry offers a practical and inexpensive method for muscle and fat estimation in clinical and epidemiological settings; however, its use is imperfect due to many limitations, such as a shortage of reference data, misuse of terminology, unclear assumptions, and the absence of properly validated anthropometric equations. To date, anthropometric methods are not sensitive enough to detect muscle and fat loss. Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health disease and during weight loss through; 1. evaluating and critiquing the literature, to identify the best-published prediction equations for adipose/fat and muscle mass estimation; 2. to derive and validate adipose tissue and muscle mass prediction equations; and 3.to evaluate the prediction equations along with anthropometric indices and the best equations retrieved from the literature in health, metabolic illness and during weight loss. Methods: a Systematic review using Cochrane Review method was used for reviewing muscle mass estimation papers that used MRI as the reference method. Fat mass estimation papers were critically reviewed. Mixed ethnic, age and body mass data that underwent whole body magnetic resonance imaging to quantify adipose tissue and muscle mass (dependent variable) and anthropometry (independent variable) were used in the derivation/validation analysis. Multiple regression and Bland-Altman plot were applied to evaluate the prediction equations. To determine how well the equations identify metabolic illness, English and Scottish health surveys were studied. Statistical analysis using multiple regression and binary logistic regression were applied to assess model fit and associations. Also, populations were divided into quintiles and relative risk was analysed. Finally, the prediction equations were evaluated by applying them to a pilot study of 10 subjects who underwent whole-body MRI, anthropometric measurements and muscle strength before and after weight loss to determine how well the equations identify adipose/fat mass and muscle mass change. Results: The estimation of fat mass has serious problems. Despite advances in technology and science, prediction equations for the estimation of fat mass depend on limited historical reference data and remain dependent upon assumptions that have not yet been properly validated for different population groups. Muscle mass does not have the same conceptual problems; however, its measurement is still problematic and reference data are scarce. The derivation and validation analysis in this thesis was satisfactory, compared to prediction equations in the literature they were similar or even better. Applying the prediction equations in metabolic illness and during weight loss presented an understanding on how well the equations identify metabolic illness showing significant associations with diabetes, hypertension, HbA1c and blood pressure. And moderate to high correlations with MRI-measured adipose tissue and muscle mass before and after weight loss. Conclusion: Adipose tissue mass and to an extent muscle mass can now be estimated for many purposes as population or groups means. However, these equations must not be used for assessing fatness and categorising individuals. Further exploration in different populations and health surveys would be valuable.