3 resultados para Design and Development
em Glasgow Theses Service
Resumo:
INTRODUCTION: In common with much of the developed world, Scotland has a severe and well established problem with overweight and obesity in childhood with recent figures demonstrating that 31% of Scottish children aged 2-15 years old were overweight including obese in 2014. This problem is more pronounced in socioeconomically disadvantaged groups and in older children across all economic groups (Scottish Health Survey, 2014). Children who are overweight or obese are at increased risk of a number of adverse health outcomes in the short term and throughout their life course (Lobstein and Jackson-Leach, 2006). The Scottish Government tasked all Scottish Health Boards with developing and delivering child healthy weight interventions to clinically overweight or obese children in an attempt to address this health problem. It is therefore imperative to deliver high quality, affordable, appropriately targeted interventions which can make a sustained impact on children’s lifestyles, setting them up for life as healthy weight adults. This research aimed to inform the design, readiness for application and Health Board suitability of an effective primary school-based curricular child healthy weight intervention. METHODS: the process involved in conceptualising a child healthy weight intervention, developing the intervention, planning for implementation and subsequent evaluation was guided by the PRECEDE-PROCEED Model (Green and Kreuter, 2005) and the Intervention Mapping protocol (Lloyd et al. 2011). RESULTS: The outputs from each stage of the development process were used to formulate a child healthy weight intervention conceptual model then develop plans for delivery and evaluation. DISCUSSION: The Fit for School conceptual model developed through this process has the potential to theoretically modify energy balance related behaviours associated with unhealthy weight gain in childhood. It also has the potential to be delivered at a Health Board scale within current organisational restrictions.
Resumo:
This portfolio thesis describes work undertaken by the author under the Engineering Doctorate program of the Institute for System Level Integration. It was carried out in conjunction with the sponsor company Teledyne Defence Limited. A radar warning receiver is a device used to detect and identify the emissions of radars. They were originally developed during the Second World War and are found today on a variety of military platforms as part of the platform’s defensive systems. Teledyne Defence has designed and built components and electronic subsystems for the defence industry since the 1970s. This thesis documents part of the work carried out to create Phobos, Teledyne Defence’s first complete radar warning receiver. Phobos was designed to be the first low cost radar warning receiver. This was made possible by the reuse of existing Teledyne Defence products, commercial off the shelf hardware and advanced UK government algorithms. The challenges of this integration are described and discussed, with detail given of the software architecture and the development of the embedded application. Performance of the embedded system as a whole is described and qualified within the context of a low cost system.
Resumo:
Spinal cord injury (SCI) is a devastating condition, which results from trauma to the cord, resulting in a primary injury response which leads to a secondary injury cascade, causing damage to both glial and neuronal cells. Following trauma, the central nervous system (CNS) fails to regenerate due to a plethora of both intrinsic and extrinsic factors. Unfortunately, these events lead to loss of both motor and sensory function and lifelong disability and care for sufferers of SCI. There have been tremendous advancements made in our understanding of the mechanisms behind axonal regeneration and remyelination of the damaged cord. These have provided many promising therapeutic targets. However, very few have made it to clinical application, which could potentially be due to inadequate understanding of compound mechanism of action and reliance on poor SCI models. This thesis describes the use of an established neural cell co-culture model of SCI as a medium throughput screen for compounds with potential therapeutic properties. A number of compounds were screened which resulted in a family of compounds, modified heparins, being taken forward for more intense investigation. Modified heparins (mHeps) are made up of the core heparin disaccharide unit with variable sulphation groups on the iduronic acid and glucosamine residues; 2-O-sulphate (C2), 6-O-sulphate (C6) and N-sulphate (N). 2-O-sulphated (mHep6) and N-sulphated (mHep7) heparin isomers were shown to promote both neurite outgrowth and myelination in the SCI model. It was found that both mHeps decreased oligodendrocyte precursor cell (OPC) proliferation and increased oligodendrocyte (OL) number adjacent to the lesion. However, there is a difference in the direct effects on the OL from each of the mHeps; mHep6 increased myelin internode length and mHep7 increased the overall cell size. It was further elucidated that these isoforms interact with and mediate both Wnt and FGF signalling. In OPC monoculture experiments FGF2 treated OPCs displayed increased proliferation but this effect was removed when co-treated with the mHeps. Therefore, suggesting that the mHeps interact with the ligand and inhibit FGF2 signalling. Additionally, it was shown that both mHeps could be partially mediating their effects through the Wnt pathway. mHep effects on both myelination and neurite outgrowth were removed when co-treated with a Wnt signalling inhibitor, suggesting cell signalling mediation by ligand immobilisation and signalling activation as a mechanistic action for the mHeps. However, the initial methods employed in this thesis were not sufficient to provide a more detailed study into the effects the mHeps have on neurite outgrowth. This led to the design and development of a novel microfluidic device (MFD), which provides a platform to study of axonal injury. This novel device is a three chamber device with two chambers converging onto a central open access chamber. This design allows axons from two points of origin to enter a chamber which can be subjected to injury, thus providing a platform in which targeted axonal injury and the regenerative capacity of a compound study can be performed. In conclusion, this thesis contributes to and advances the study of SCI in two ways; 1) identification and investigation of a novel set of compounds with potential therapeutic potential i.e. desulphated modified heparins. These compounds have multiple therapeutic properties and could revolutionise both the understanding of the basic pathological mechanisms underlying SCI but also be a powered therapeutic option. 2) Development of a novel microfluidic device to study in greater detail axonal biology, specifically, targeted axonal injury and treatment, providing a more representative model of SCI than standard in vitro models. Therefore, the MFD could lead to advancements and the identification of factors and compounds relating to axonal regeneration.