2 resultados para Context evaluation
em Glasgow Theses Service
Resumo:
This thesis reports on an investigation of the feasibility and usefulness of incorporating dynamic management facilities for managing sensed context data in a distributed contextaware mobile application. The investigation focuses on reducing the work required to integrate new sensed context streams in an existing context aware architecture. Current architectures require integration work for new streams and new contexts that are encountered. This means of operation is acceptable for current fixed architectures. However, as systems become more mobile the number of discoverable streams increases. Without the ability to discover and use these new streams the functionality of any given device will be limited to the streams that it knows how to decode. The integration of new streams requires that the sensed context data be understood by the current application. If the new source provides data of a type that an application currently requires then the new source should be connected to the application without any prior knowledge of the new source. If the type is similar and can be converted then this stream too should be appropriated by the application. Such applications are based on portable devices (phones, PDAs) for semi-autonomous services that use data from sensors connected to the devices, plus data exchanged with other such devices and remote servers. Such applications must handle input from a variety of sensors, refining the data locally and managing its communication from the device in volatile and unpredictable network conditions. The choice to focus on locally connected sensory input allows for the introduction of privacy and access controls. This local control can determine how the information is communicated to others. This investigation focuses on the evaluation of three approaches to sensor data management. The first system is characterised by its static management based on the pre-pended metadata. This was the reference system. Developed for a mobile system, the data was processed based on the attached metadata. The code that performed the processing was static. The second system was developed to move away from the static processing and introduce a greater freedom of handling for the data stream, this resulted in a heavy weight approach. The approach focused on pushing the processing of the data into a number of networked nodes rather than the monolithic design of the previous system. By creating a separate communication channel for the metadata it is possible to be more flexible with the amount and type of data transmitted. The final system pulled the benefits of the other systems together. By providing a small management class that would load a separate handler based on the incoming data, Dynamism was maximised whilst maintaining ease of code understanding. The three systems were then compared to highlight their ability to dynamically manage new sensed context. The evaluation took two approaches, the first is a quantitative analysis of the code to understand the complexity of the relative three systems. This was done by evaluating what changes to the system were involved for the new context. The second approach takes a qualitative view of the work required by the software engineer to reconfigure the systems to provide support for a new data stream. The evaluation highlights the various scenarios in which the three systems are most suited. There is always a trade-o↵ in the development of a system. The three approaches highlight this fact. The creation of a statically bound system can be quick to develop but may need to be completely re-written if the requirements move too far. Alternatively a highly dynamic system may be able to cope with new requirements but the developer time to create such a system may be greater than the creation of several simpler systems.
Resumo:
With the rise of smart phones, lifelogging devices (e.g. Google Glass) and popularity of image sharing websites (e.g. Flickr), users are capturing and sharing every aspect of their life online producing a wealth of visual content. Of these uploaded images, the majority are poorly annotated or exist in complete semantic isolation making the process of building retrieval systems difficult as one must firstly understand the meaning of an image in order to retrieve it. To alleviate this problem, many image sharing websites offer manual annotation tools which allow the user to “tag” their photos, however, these techniques are laborious and as a result have been poorly adopted; Sigurbjörnsson and van Zwol (2008) showed that 64% of images uploaded to Flickr are annotated with < 4 tags. Due to this, an entire body of research has focused on the automatic annotation of images (Hanbury, 2008; Smeulders et al., 2000; Zhang et al., 2012a) where one attempts to bridge the semantic gap between an image’s appearance and meaning e.g. the objects present. Despite two decades of research the semantic gap still largely exists and as a result automatic annotation models often offer unsatisfactory performance for industrial implementation. Further, these techniques can only annotate what they see, thus ignoring the “bigger picture” surrounding an image (e.g. its location, the event, the people present etc). Much work has therefore focused on building photo tag recommendation (PTR) methods which aid the user in the annotation process by suggesting tags related to those already present. These works have mainly focused on computing relationships between tags based on historical images e.g. that NY and timessquare co-exist in many images and are therefore highly correlated. However, tags are inherently noisy, sparse and ill-defined often resulting in poor PTR accuracy e.g. does NY refer to New York or New Year? This thesis proposes the exploitation of an image’s context which, unlike textual evidences, is always present, in order to alleviate this ambiguity in the tag recommendation process. Specifically we exploit the “what, who, where, when and how” of the image capture process in order to complement textual evidences in various photo tag recommendation and retrieval scenarios. In part II, we combine text, content-based (e.g. # of faces present) and contextual (e.g. day-of-the-week taken) signals for tag recommendation purposes, achieving up to a 75% improvement to precision@5 in comparison to a text-only TF-IDF baseline. We then consider external knowledge sources (i.e. Wikipedia & Twitter) as an alternative to (slower moving) Flickr in order to build recommendation models on, showing that similar accuracy could be achieved on these faster moving, yet entirely textual, datasets. In part II, we also highlight the merits of diversifying tag recommendation lists before discussing at length various problems with existing automatic image annotation and photo tag recommendation evaluation collections. In part III, we propose three new image retrieval scenarios, namely “visual event summarisation”, “image popularity prediction” and “lifelog summarisation”. In the first scenario, we attempt to produce a rank of relevant and diverse images for various news events by (i) removing irrelevant images such memes and visual duplicates (ii) before semantically clustering images based on the tweets in which they were originally posted. Using this approach, we were able to achieve over 50% precision for images in the top 5 ranks. In the second retrieval scenario, we show that by combining contextual and content-based features from images, we are able to predict if it will become “popular” (or not) with 74% accuracy, using an SVM classifier. Finally, in chapter 9 we employ blur detection and perceptual-hash clustering in order to remove noisy images from lifelogs, before combining visual and geo-temporal signals in order to capture a user’s “key moments” within their day. We believe that the results of this thesis show an important step towards building effective image retrieval models when there lacks sufficient textual content (i.e. a cold start).