2 resultados para Computer-based assessment

em Glasgow Theses Service


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Maintaining accessibility to and understanding of digital information over time is a complex challenge that often requires contributions and interventions from a variety of individuals and organizations. The processes of preservation planning and evaluation are fundamentally implicit and share similar complexity. Both demand comprehensive knowledge and understanding of every aspect of to-be-preserved content and the contexts within which preservation is undertaken. Consequently, means are required for the identification, documentation and association of those properties of data, representation and management mechanisms that in combination lend value, facilitate interaction and influence the preservation process. These properties may be almost limitless in terms of diversity, but are integral to the establishment of classes of risk exposure, and the planning and deployment of appropriate preservation strategies. We explore several research objectives within the course of this thesis. Our main objective is the conception of an ontology for risk management of digital collections. Incorporated within this are our aims to survey the contexts within which preservation has been undertaken successfully, the development of an appropriate methodology for risk management, the evaluation of existing preservation evaluation approaches and metrics, the structuring of best practice knowledge and lastly the demonstration of a range of tools that utilise our findings. We describe a mixed methodology that uses interview and survey, extensive content analysis, practical case study and iterative software and ontology development. We build on a robust foundation, the development of the Digital Repository Audit Method Based on Risk Assessment. We summarise the extent of the challenge facing the digital preservation community (and by extension users and creators of digital materials from many disciplines and operational contexts) and present the case for a comprehensive and extensible knowledge base of best practice. These challenges are manifested in the scale of data growth, the increasing complexity and the increasing onus on communities with no formal training to offer assurances of data management and sustainability. These collectively imply a challenge that demands an intuitive and adaptable means of evaluating digital preservation efforts. The need for individuals and organisations to validate the legitimacy of their own efforts is particularly prioritised. We introduce our approach, based on risk management. Risk is an expression of the likelihood of a negative outcome, and an expression of the impact of such an occurrence. We describe how risk management may be considered synonymous with preservation activity, a persistent effort to negate the dangers posed to information availability, usability and sustainability. Risk can be characterised according to associated goals, activities, responsibilities and policies in terms of both their manifestation and mitigation. They have the capacity to be deconstructed into their atomic units and responsibility for their resolution delegated appropriately. We continue to describe how the manifestation of risks typically spans an entire organisational environment, and as the focus of our analysis risk safeguards against omissions that may occur when pursuing functional, departmental or role-based assessment. We discuss the importance of relating risk-factors, through the risks themselves or associated system elements. To do so will yield the preservation best-practice knowledge base that is conspicuously lacking within the international digital preservation community. We present as research outcomes an encapsulation of preservation practice (and explicitly defined best practice) as a series of case studies, in turn distilled into atomic, related information elements. We conduct our analyses in the formal evaluation of memory institutions in the UK, US and continental Europe. Furthermore we showcase a series of applications that use the fruits of this research as their intellectual foundation. Finally we document our results in a range of technical reports and conference and journal articles. We present evidence of preservation approaches and infrastructures from a series of case studies conducted in a range of international preservation environments. We then aggregate this into a linked data structure entitled PORRO, an ontology relating preservation repository, object and risk characteristics, intended to support preservation decision making and evaluation. The methodology leading to this ontology is outlined, and lessons are exposed by revisiting legacy studies and exposing the resource and associated applications to evaluation by the digital preservation community.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanotechnology has revolutionised humanity's capability in building microscopic systems by manipulating materials on a molecular and atomic scale. Nan-osystems are becoming increasingly smaller and more complex from the chemical perspective which increases the demand for microscopic characterisation techniques. Among others, transmission electron microscopy (TEM) is an indispensable tool that is increasingly used to study the structures of nanosystems down to the molecular and atomic scale. However, despite the effectivity of this tool, it can only provide 2-dimensional projection (shadow) images of the 3D structure, leaving the 3-dimensional information hidden which can lead to incomplete or erroneous characterization. One very promising inspection method is Electron Tomography (ET), which is rapidly becoming an important tool to explore the 3D nano-world. ET provides (sub-)nanometer resolution in all three dimensions of the sample under investigation. However, the fidelity of the ET tomogram that is achieved by current ET reconstruction procedures remains a major challenge. This thesis addresses the assessment and advancement of electron tomographic methods to enable high-fidelity three-dimensional investigations. A quality assessment investigation was conducted to provide a quality quantitative analysis of the main established ET reconstruction algorithms and to study the influence of the experimental conditions on the quality of the reconstructed ET tomogram. Regular shaped nanoparticles were used as a ground-truth for this study. It is concluded that the fidelity of the post-reconstruction quantitative analysis and segmentation is limited, mainly by the fidelity of the reconstructed ET tomogram. This motivates the development of an improved tomographic reconstruction process. In this thesis, a novel ET method was proposed, named dictionary learning electron tomography (DLET). DLET is based on the recent mathematical theorem of compressed sensing (CS) which employs the sparsity of ET tomograms to enable accurate reconstruction from undersampled (S)TEM tilt series. DLET learns the sparsifying transform (dictionary) in an adaptive way and reconstructs the tomogram simultaneously from highly undersampled tilt series. In this method, the sparsity is applied on overlapping image patches favouring local structures. Furthermore, the dictionary is adapted to the specific tomogram instance, thereby favouring better sparsity and consequently higher quality reconstructions. The reconstruction algorithm is based on an alternating procedure that learns the sparsifying dictionary and employs it to remove artifacts and noise in one step, and then restores the tomogram data in the other step. Simulation and real ET experiments of several morphologies are performed with a variety of setups. Reconstruction results validate its efficiency in both noiseless and noisy cases and show that it yields an improved reconstruction quality with fast convergence. The proposed method enables the recovery of high-fidelity information without the need to worry about what sparsifying transform to select or whether the images used strictly follow the pre-conditions of a certain transform (e.g. strictly piecewise constant for Total Variation minimisation). This can also avoid artifacts that can be introduced by specific sparsifying transforms (e.g. the staircase artifacts the may result when using Total Variation minimisation). Moreover, this thesis shows how reliable elementally sensitive tomography using EELS is possible with the aid of both appropriate use of Dual electron energy loss spectroscopy (DualEELS) and the DLET compressed sensing algorithm to make the best use of the limited data volume and signal to noise inherent in core-loss electron energy loss spectroscopy (EELS) from nanoparticles of an industrially important material. Taken together, the results presented in this thesis demonstrates how high-fidelity ET reconstructions can be achieved using a compressed sensing approach.