2 resultados para Communication in drug abuse prevention
em Glasgow Theses Service
Resumo:
The use of chemical control measures to reduce the impact of parasite and pest species has frequently resulted in the development of resistance. Thus, resistance management has become a key concern in human and veterinary medicine, and in agricultural production. Although it is known that factors such as gene flow between susceptible and resistant populations, drug type, application methods, and costs of resistance can affect the rate of resistance evolution, less is known about the impacts of density-dependent eco-evolutionary processes that could be altered by drug-induced mortality. The overall aim of this thesis was to take an experimental evolution approach to assess how life history traits respond to drug selection, using a free-living dioecious worm (Caenorhabditis remanei) as a model. In Chapter 2, I defined the relationship between C. remanei survival and Ivermectin dose over a range of concentrations, in order to control the intensity of selection used in the selection experiment described in Chapter 4. The dose-response data were also used to appraise curve-fitting methods, using Akaike Information Criterion (AIC) model selection to compare a series of nonlinear models. The type of model fitted to the dose response data had a significant effect on the estimates of LD50 and LD99, suggesting that failure to fit an appropriate model could give misleading estimates of resistance status. In addition, simulated data were used to establish that a potential cost of resistance could be predicted by comparing survival at the upper asymptote of dose-response curves for resistant and susceptible populations, even when differences were as low as 4%. This approach to dose-response modeling ensures that the maximum amount of useful information relating to resistance is gathered in one study. In Chapter 3, I asked how simulations could be used to inform important design choices used in selection experiments. Specifically, I focused on the effects of both within- and between-line variation on estimated power, when detecting small, medium and large effect sizes. Using mixed-effect models on simulated data, I demonstrated that commonly used designs with realistic levels of variation could be underpowered for substantial effect sizes. Thus, use of simulation-based power analysis provides an effective way to avoid under or overpowering a study designs incorporating variation due to random effects. In Chapter 4, I 3 investigated how Ivermectin dosage and changes in population density affect the rate of resistance evolution. I exposed replicate lines of C. remanei to two doses of Ivermectin (high and low) to assess relative survival of lines selected in drug-treated environments compared to untreated controls over 10 generations. Additionally, I maintained lines where mortality was imposed randomly to control for differences in density between drug treatments and to distinguish between the evolutionary consequences of drug treatment versus ecological processes affected by changes in density-dependent feedback. Intriguingly, both drug-selected and random-mortality lines showed an increase in survivorship when challenged with Ivermectin; the magnitude of this increase varied with the intensity of selection and life-history stage. The results suggest that interactions between density-dependent processes and life history may mediate evolved changes in susceptibility to control measures, which could result in misleading conclusions about the evolution of heritable resistance following drug treatment. In Chapter 5, I investigated whether the apparent changes in drug susceptibility found in Chapter 4 were related to evolved changes in life-history of C. remanei populations after selection in drug-treated and random-mortality environments. Rapid passage of lines in the drug-free environment had no effect on the measured life-history traits. In the drug-free environment, adult size and fecundity of drug-selected lines increased compared to the controls but drug selection did not affect lifespan. In the treated environment, drug-selected lines showed increased lifespan and fecundity relative to controls. Adult size of randomly culled lines responded in a similar way to drug-selected lines in the drug-free environment, but no change in fecundity or lifespan was observed in either environment. The results suggest that life histories of nematodes can respond to selection as a result of the application of control measures. Failure to take these responses into account when applying control measures could result in adverse outcomes, such as larger and more fecund parasites, as well as over-estimation of the development of genetically controlled resistance. In conclusion, my thesis shows that there may be a complex relationship between drug selection, density-dependent regulatory processes and life history of populations challenged with control measures. This relationship could have implications for how resistance is monitored and managed if life histories of parasitic species show such eco-evolutionary responses to drug application.
Resumo:
Liquid chromatography coupled with mass spectrometry is one of the most powerful tools in the toxicologist’s arsenal to detect a wide variety of compounds from many different matrices. However, the huge number of potentially abused substances and new substances especially designed as intoxicants poses a problem in a forensic toxicology setting. Most methods are targeted and designed to cover a very specific drug or group of drugs while many other substances remain undetected. High resolution mass spectrometry, more specifically time-of-flight mass spectrometry, represents an extremely powerful tool in analysing a multitude of compounds not only simultaneously but also retroactively. The data obtained through the time-of-flight instrument contains all compounds made available from sample extraction and chromatography, which can be processed at a later time with an improved library to detect previously unrecognised compounds without having to analyse the respective sample again. The aim of this project was to determine the utility and limitations of time-of-flight mass spectrometry as a general and easily expandable screening method. The resolution of time-of-flight mass spectrometry allows for the separation of compounds with the same nominal mass but distinct exact masses without the need to separate them chromatographically. To simulate the wide variety of potentially encountered drugs in such a general screening method, seven drugs (morphine, cocaine, zolpidem, diazepam, amphetamine, MDEA and THC) were chosen to represent this variety in terms of mass, properties and functional groups. Consequently, several liquid-liquid and solid phase extractions were applied to urine samples to determine the most general suitable and unspecific extraction. Chromatography was optimised by investigating the parameters pH, concentration, organic solvent and gradient of the mobile phase to improve data obtained by the time-of-flight instrument. The resulting method was validated as a qualitative confirmation/identification method. Data processing was automated using the software TargetAnalysis, which provides excellent analyte recognition according to retention time, exact mass and isotope pattern. The recognition of isotope patterns allows excellent recognition of analytes even in interference rich mass spectra and proved to be a good positive indicator. Finally, the validated method was applied to samples received from the A& E Department of Glasgow Royal Infirmary in suspected drug abuse cases and samples received from the Scottish Prison Service, which we received from their own prevalence study targeting drugs of abuse in the prison population. The obtained data was processed with a library established in the course of this work.